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Molecular modeling is an important tool to aid the understanding of the fundamental concepts of structure-
activity relationships, and to elucidate the mechanism of action of drugs (drug-receptor interaction), used in
the teaching-research-extension. The physico-chemical properties as well as three-dimensional visualization
of electronic and steric molecular properties elucidation of the interaction between drugs and macromolecules
target can be calculated and/or suggested by molecular modeling programs. In this work we show that studies
of structure-activity relationships are of great importance in modern chemistry, biochemistry, molecular biology,
and other fields of knowledge of health sciences. In order to obtain a significant correlation, it is essential that
the descriptors are used appropriately. Thus, the quantum chemical calculations are an attractive source of new
molecular descriptors that can, in principle, express all the geometric and electronic properties of molecules
and their interactions with biological receptor.
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1. ORIGIN OF COMPUTATIONAL
CHEMISTRY

The name of computational chemistry can be understood,
in general, the field of computational methods applied
chemistry and related fields. Since there is a large num-
ber of computational procedures, computational chemistry
presents itself as an interdisciplinary field, by branching
out into different areas that, traditionally, it is customary to
divide the chemical (Physical Chemistry, Organic Chem-
istry, Pharmaceutical Chemistry, Biochemistry, Inorganic
Chemistry, Analytical Chemistry, chemical Technology
and other knowledge areas of human health, as well as
the Molecular Biology and Computer Science). Over the
past 25 years many application areas of computational
chemistry suffered a significant development due to the
emergence of new computers, sophisticated software and
a better understanding of the basic principles.1

The potential offered by current technology hardware
and software led to the development of a variety of tech-
niques for numerical and symbolic computations. These
methods have opened many application areas and the spec-
tacular increase the potential of this technology to make
computational chemistry one of the most promising inter-
disciplinary toward the twenty-first century.1

The Computational Chemistry is a vector in the direc-
tion of unification, by identifying himself as an interdis-
ciplinary field based on a ubiquitous laboratory tool—the
computer—it is a tool capable of treating both quantum
and classical modeling, geometry and chemical informa-
tion. This essential characteristic and perhaps only intro-
duced a new scientific community based on the ability of
the computer to solve chemical problems and the meet-
ing of scientists from different fields traditionally sepa-
rated. The interaction between them has led to scientific
and technological achievements of great importance as
well as the encouragement of new generations of young
researchers.1

Improving the understanding of the students about the
concepts of chemistry has been a major goal of researchers
in the Teaching of Chemistry (and Science in general)
during the last decades. A resource that has been used
since the decade of 60 as a tool for learning is the com-
puter, as can be seen in the pioneering work of Atkinson
(1968),2 Suppes Morningstar (1968).3 The possibilities of
using this technology are very large, and over the years it
has evolved and changed, as we can see in some articles
selected to investigate the presence of this theme in the
world of chemistry.4

At the beginning of the decade 70, at the University of
Lancaster, England, a course in Quantum Chemistry has
been carefully organized by chemical Duke5 in order to
regain lost motivation due to failed attempts of computer
scientists that by introducing computational techniques in
teaching chemistry, not taking matters relevant to chem-
istry. This placement reveals that, in 1972, the use of

computers in chemical education was already the focus of
research, but was not being conducted in a way to encour-
age students. In their experiment, Duke a program used
to calculate the properties of aromatic compounds by the
molecular orbital method.
Fortunately the framework of dissatisfaction was over-

come notes as Duke (1972)5 “This practical experiment
proved successful in that most students learned a substan-
tial body of knowledge on the application of molecular
orbital theory to chemistry organic and seems rather inter-
ested.” Years later, the same topic was addressed in the
University Chemical Laboratory, Cambridge, UK, where
microcomputers were used as a teaching tool for Molecu-
lar Orbital Theory. “We believe that such programs are of
great help in teaching theoretical chemistry.” 6

The Royal Swedish Academy of Sciences awarded
the Nobel Prize in Chemistry 1998 researchers: Walter
Kohn (University of California, Santa Barbara, California,
USA) for his contribution to the development of Den-
sity Functional Theory and Pople (North Western Univer-
sity, Evanston, Illinois, USA) for his contribution to the
development of computational methods in quantum chem-
istry. With these developments that were started from the
1960s, the chemistry reaffirms itself as an exact science,
computable.7

The IUPAC defines computational chemistry as follows:
“Molecular aspects of research as made practical by the
use of computers.” 8 Since then, progress in development
of software and hardware combined with a steady reduc-
tion of cost of materials informatics, computational chem-
istry makes one of the most promising areas of this new
century. More recently supramolecular chemistry (com-
pounds formed by several molecules) was approached
simultaneously by researchers from the Université Louis
Pasteur in France and Novosibirsk State University in
Russia in 2000, through a course-based model CAI,
instruction aided by computer (Computer Aided Instruc-
tion), which, according to the researchers Varnek et al.9

“allows the visualization of complex structures and per-
forming calculations modest occurs while concurrently
reading the text, and computer-assisted courses are easily
upgradeable, which is especially important for fields (sci-
ence) that expand and develop rapidly.”
In the same year, the Department of Chemistry and

Biochemistry Drigham Young University in Utah, USA,
has developed a method of teaching that included a pack-
age with animations for understanding Molecular Orbital
in organic reactions. The purpose of the use of simula-
tions was to facilitate the visualization and understanding
of this topic. With this method the authors Fleming, Hart
and Savage (2000)10 concluded that “students may ben-
efit from three-dimensional computer representations of
chemical events.”
The development and subsequent use of software in the

classroom helps solving chemical problems, and versatility
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of computational chemistry not only allows its application
in teaching chemistry as well as in research and develop-
ment laboratories and industries. The molecular modeling,
for example, is an important tool in developing phar-
maceuticals and can be used in rational design of new
drugs.
According to Rodrigues (2001)11 “Molecular model-

ing provides important information for the process of
drug discovery. It allows to obtain specific properties of
a molecule that can influence the interaction with the
receptor.”
The development of software for computational

chemistry followed two separate paths, with the current
complement of a third. Initially, we worked with the devel-
opment of codes capable of solving the equations of quan-
tum mechanics to atomic systems strictly based on “first
principles.” These calculations involve the resolution of a
large amount of integrals, even after applying the usual
simplifications, such as the Born-Oppenheimer approxima-
tion (roughly speaking can be seen as the separation of
electronic and nuclear motion) and the absence of rela-
tivistic effects, among others. From this, we have reached
an initial commitment resulting in a method called SCF
(Self-Consistent Field), virtually omnipresent in all com-
putational chemistry programs. This method leads to a new
approximation that ignores the electron–electron interac-
tion (which is “re-introduced” in several ways, the most
popular is via perturbation theory, methods abbreviated
MP (n), where the electron correlation effects (interaction
between electrons) is introduced via TP–RS (Perturbation
Theory Rayleigh-Schrödinger).
The second development path followed not from first

principles, but the approaches and results of calculations
parameterized by atomic groups in order to save the com-
putational steps. Aiming to “embrace” fast calculation of
larger systems, and therefore greater chemical interest. The
semi-empirical methods parameterize several calculations
that the ab initio methods necessarily repeated for each
new system. So make up scales of power calculation, with
a natural loss of accuracy.
Among the most popular methods, are the INDO,

CNDO, AM1 and PM3 methods longer used. Finally,
in recent decades, a new scale of calculation was intro-
duced, with the MD simulation methods (Molecular
Dynamics) and Monte Carlo,12 which basically does not
treat the chemical system as obeying rules of quantum
mechanics, but classics like atomic systems using clas-
sical potentials to model the behavior of these systems.
Applies to systems with thousands of atoms, typically
for modeling systems of biological interest or solvation,
where this approach is justified by its chemical interest.
It is common for software currently existing computa-
tional chemistry methods or methods using these prod-
ucts, which we will not discuss here. Some of these
methods can be used both for research but also for teaching
chemistry.

2. COMPUTATIONAL METHODS USED IN
THE CALCULATION OF MOLECULAR
PROPERTIES

The methods of quantum chemistry can be applied to
quantitative structure-activity relationships (QSAR) for the
direct derivation of the electronic descriptors from the
molecular wave function. In general, the more rigorous
theoretical treatment does not use empirical parameters
and is called ab initio. Although this type of method pro-
vides relatively accurate information about the electronic
behavior, he is, in operational terms, slower and more
expensive. Therefore, several semi-empirical methods have
been developed which are based on certain assumptions
which serve to simplify the calculations and use certain
parameters obtained from experimental data. Note that the
accuracy of these methods is related to the error associ-
ated with the selected basis set and the level of treatment
of electron correlation. Therefore, there are several com-
putational methods used in the calculations of molecular
properties, among them are: the semi-empirical, ab initio
and Density Functional Theory (DFT).

2.1. Semi-Empirical Methods
The semi-empirical methods using the same formalism as
mechanical-like employing basis sets including only the
electrons of the valence shell of the system.
The reason behind this approach is that the electrons

involved in chemical reactions and other phenomena are
the intermolecular electron from the valence shell.13

Thus, the great advantage of the semi-empirical meth-
ods compared to ab initio methods is the higher processing
speed, since the calculations are simplified, reducing the
cost of memory and computational time. Unlike ab ini-
tio methods, methods employing semi-empirical is empir-
ical parameters, i.e., derived from experimental data such
as geometry of equilibrium heat of formation, molecular
dipole moment and ionization potentials, or previously cal-
culated by the Schrödinger equation, allowing some inte-
grals present in the ab initio method are not calculated
simplifying computations.14�15

The first method using this approach is the CNDO
(Complete Neglect of Differential Overlap), in which the
atomic orbitals are considered in evaluating spherically
symmetrical electron repulsion integral. Other methods
also use these approaches such as INDO (Intermediate
Neglect of Differential Overlap), and NDDO (Neglect of
Diatomic Differential Overlap).13

The semi-empirical methods most commonly used
are AM1 (Austin Model1)16 and PM3 (Parametric
Method 3),17 both methods incorporate approaches very
similar, but differ in the parameterization.
Recently, the AM1 method was subjected to a re-

parameterization for the atoms of H, C, N, O, P, S, F, Cl,
Br and I, resulting in method RM1 (Recife Model1), with
minor miscalculations than those generated by AM1 and
PM3.18
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2.2. Ab Initio Methods
The term Latin means ab initio “from the top” or “from the
fundamental principles,” i.e., calculations are performed
from fundamental physical constants using exact equa-
tions, involving a total electronic population of molecule
without the use experimental parameters and without addi-
tional approaches. The first method for calculating the
electronic structure was the Hartree-Fock (HF) which
employs the full Schrödinger equation to treat all the elec-
trons in a chemical system.14

This model employs sets of basis functions (basis set)
calculations such as the functions of the Slater Type (STO)
and Gaussian Functions (GTO 3-21G, 6-31G). These bases
have several deficiencies minimum and to enhance them
is the inclusion of polarization function (i.e., p orbitals
represented by ∗).13

Thus, 6-31G∗ refers to basis set 6-31G with polar-
ization function to heavy atoms (i.e., atoms different
from hydrogen), 6-31G∗∗ refers to the inclusion of func-
tion for the polarization atoms hydrogen and helium.
The 6-31G∗∗ basis is particularly useful where there are
hydrogen bonds. Basis functions with partial polarization
have also been developed, for example, 3-21G∗ which
is the same minimum 3-21G basis functions with partial
polarization.13

Although the ab initio methods give a quantitative pre-
diction of high quality for a wide variety of systems,
they are time consuming and of high cost computation.
A resource is commonly used to optimize the geometry
with a set of base simplest and then perform calculations to
“single point” with a more complete set of base allowing
to determine the energy and other properties of a molecu-
lar system, using a more sophisticated calculation basis.13

2.3. Density Functional Theory
The Density Functional Theory (DFT) is a very success-
ful formalism, where the main objective is to replace the
wave function, used to write the electrons in methods like
Hartree-Fock, the electron density. The HF calculations
consider an average electron density, since the DFT cal-
culations consider instant interactions of pairs of electrons
with opposite spins.19 It is an approach based on the theory
of Hohenberg and Kohn which states that all properties of
a system are functions of the charge density.
Thus, the Hohenberg-Kohn theorem allows to write

the total electronic energy as a function of the electron
density �:

E���= EKE���+EC���+EH���+Exc��� (1)

where EKE��� is the kinetic energy, EC��� is the
interaction term nucleus-electron, EH��� is the Coulomb
energy and Exc��� contains the contributions of exchange
and correlation.
The molecular orbital calculations of density functional

are usually written as a linear expansion of atomic orbitals
(ie basis functions) that can be represented using Gaussian

type functions, Slater orbitals or orbital numeric.19 Func-
tional models density as well as the Hartree-Fock models
are applicable in molecules of 50–100 atoms.15 The exact
function is not known, so there is a varied range of dif-
ferent functional that can provide different results for the
same problem. The method B3LYP (Becke, Lee, Yang and
Parr) is a hybrid method widely applied, where part of the
functional is obtained by quantum mechanics (HF com-
bines energy exchange with DFT exchange term) and part
is parameterized (adds functional correlation).20

3. THE EVOLUTION OF COMPUTATIONAL
CHEMISTRY

One of the most important advances in the design and
discovery of new drugs has been the use of Molecular
Modeling (MM). Currently, the MM is an indispensable
tool not only in the process of drug discovery, but also in
optimizing existing prototypes and the rational design of
drug candidates.14–23

According to IUPAC, the MM is the investigation
of molecular structures and properties by the use of
computational chemistry and graphical visualization tech-
niques, aiming to provide a three-dimensional representa-
tion, under a given set of circumstances.14 The nature of
the molecular properties used and the extent to which they
describe the structural characteristics of the molecules may
be related to biological activity, which is an important part
of any QSAR study.
The great development of MM in recent years is due

largely to the advancement of computational resources in
terms of hardware (calculation speed) and software (com-
puter programs), in addition to advances in computational
chemistry, nuclear magnetic resonance, ray crystallography
X-biochemistry and molecular biology. This allowed large
contribution in the discovery of drug candidates, leading to
rapid progress in research and attracting the interest of both
academic environment and pharmaceutical industries.21�23

Silva et al.24 used density functional theory (DFT) cal-
culations (B3PW91/DGDZVP) to determine 13C and 1H
nuclear magnetic resonance (NMR) chemical shifts for the
two dihydrochalcones: 3,4,5-trimethoxydihydrochalcone
and 2,3,4,4-tetramethoxydihydrochalcone. The experimen-
tal and theoretical NMR data were analyzed by simple
linear regression and the more relevant parameters were
selected. In additional, other statistical parameters (cor-
relation coefficients, significance and predictability) were
available to judge the quality of the calculations. Finally,
the statistical analysis show good correlation experimental
and theoretical NMR data with high predictive power.
The computers increase considerably the possibilities

for scientific research in drug discovery and thereby can
allow chemists collect, store, manipulate, analyze and
visualize data. QSAR analysis may be used for planning of
biological properties such as potency, efficacy, selectivity
and bioavailability of a drug.25
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Due to recent advances in computational area and
the development of efficient algorithms for calcula-
tion, a great advance was also verified in the develop-
ment of quantum chemical calculations. The ab initio
and semi-empirical methods quantum chemical molecu-
lar parameters provide realistic in a short period of time.
Quantum-chemical calculations are great source of molec-
ular descriptors that can, in principle, express many geo-
metric and electronic properties of molecules and their
interactions. In fact, several recent studies on SAR and
QSAR employing quantum-chemical descriptors alone or
combined with conventional descriptors.26�27 The Quantum
Chemistry provides a more accurate and detailed descrip-
tion of the electronic effects when compared to empirical
methods.
Ibrahim et al.28 used Semiemperical molecular mod-

eling technique is applied to assess the interaction of
amino acids (alanine, asparagines, aspartic, arginine, cys-
teine, glutamine, glycine and tryptophan) with chitosan.
Results indicate the selectivity of chitosan furthermore we
introduce the site whereas amino acid could interact with
chitosan. Chitosan is interacting with amino acid through
NH2 group. It is concluded that chitosan is acting with
amino acids like protein interaction which dedicate chi-
tosan for many applications in the biological system.
Bayuelo et al.29 proposed methodology to the alterna-

tive way to determining of local reactivity indexes using
MQS based on the Hirshfeld partitioning. In addition con-
tribution was postulated in this news perspectives in the
field such as chemical reactivity, chemical potential, hard-
ness and electrophilicity relative, alternatives to the tra-
ditional (chemical potential, hardness and electrophilicity)
chosen in the conceptual DFT which allowed us to report
the local reactivity indexes proposed with the global that
considering the pursuit of local descriptors of reactivity on
supported ideas of MQS in Cycloaddition Reactions.
Methods of Quantum Chemistry and molecular model-

ing techniques allow the definition of a large number of
atomic and molecular properties characterizing properties
related to reactivity, form and mode of binding fragments
and molecular substituents. Due to the large information
content contained in many molecular descriptors, the use
of quantum-chemical descriptors in QSAR studies has two
main advantages: the compounds and their substituents and
several fragments can be directly characterized based only
on their molecular structures; mechanism proposed action
can be justified directly in terms of the chemical reactiv-
ity of the compounds studied. Consequently, the obtained
QSAR models include information about the nature of
intermolecular forces involved in determining the biologi-
cal activity of the compounds under study.30

3.1. Design and Conformational Analysis
3.1.1. Design and Three-Dimensional Visualization
Several programs two-dimensional of design of molecules
are available and easy to use, as ChemWindow, Isis Draw,

ChemDraw31 and Chem3D.32 They allow the prepara-
tion of figures and diagrams with desired quality and
accuracy and facilitate the documentation and scientific
communication.
The software ChemSketch 12.0033 is an advanced

design that provides chemical molecular properties, opti-
mization and 3D visualization, ability to name the
molecules, as IUPAC, and still has a large database of
chemical structures and laboratory materials. The soft-
ware automatically calculates the valence of each atom
and restricts the construction of the molecule based on the
octet rule, unless instructed to do this restriction. Then is
possible to request the construction of 3D spatial form of
the species studied, which triggers another window where
the academic can rotate tridimensionally the species stud-
ied, in addition to observing these species in different
visualizations with possibility to visualize bonds and spa-
tial arrangement of species prominently in each of these
representations.
Some programs allow the calculation and representa-

tion of various molecular properties, including formula
and molecular mass, exact mass and elementary theoreti-
cal analysis. More complete programs such as ChemDraw
Ultra,34 provide additionally the correct chemical name
(IUPAC) of chemical compounds and can predict the cor-
responding chemical shifts of 1H and 13C NMR, melting
points and freezing, log P, molar refractivity and heat of
formation.35

The design and visualization of 3D drugs, with steric
factors relevant to biological activity, are important for
analysis of the size, volume and shape of the molecules.35

The Molekel is a free software multiplatform molecular
visualization. It was originally developed at the University
of Geneva by Flükiger in the 1990s for Silicon Graph-
ics computers. In 1998, Stefan Portmann took responsibil-
ity and released version 3.0. The version 4.0 was almost
one version of the platform independent. Other develop-
ments lead version 4.3, before Stefan Portman moved and
stopped developing the codes. In 2006, the Swiss National
Supercomputing Centre (CSCS) restarted the project and
version 5.0 was released on December 21 of the same year
(FLUKIGER, 2001).36

3.1.2. Conformational Analysis and
Energy Minimization

To obtain the conformational analysis and energy mini-
mization, we can cite: the program Chem3D32 widely used
in studies with this objective.35 However, other programs
like Molecular Modeling Pro,37 ChemSite (ChemSW),38

Alchemy, Sybyl, ChemX, cache and WebLab Viewer are
also available.
In the area of molecular modeling, graphics construc-

tion and projects of drugs, the program Hyperchem39 for
being a tool specializing in 3D structures of interest to the
medical, pharmaceutical and organic chemistry. The pro-
gram lets you design complicated molecules. This software

6 Rev. Theor. Sci., 2, 1–25, 2014
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is also an alternative in the field of spectroscopy, which
besides the ability to simulate a priori by the NMR spectra
quantum methods, contains a database of approximately
10.000 molecules applicable to macromolecules as well
as small molecules. The software also includes anima-
tions, and quantum chemical calculations and molecular
mechanics.
Conformational analysis of a molecule is performed by

rotating a binding with parallel change of torsional angles,
and calculation corresponding of the steric energy, due to
spatial overlap of atoms unlinked and barriers torsional
rotation.40

Molecules designed three-dimensionally are not neces-
sarily the most stable conformation. During the generation
of a particular structure, distortion occurs in the molecule,
with formation unfavorable of lengths, bond of angles and
torsional angles. Atoms do not interact also-linked in the
same region of space and cause steric demand and electro-
static. To correct these distortions molecules are optimized
by energy minimization process, from two mathematical
models (i) molecular mechanics or (ii) quantum mechan-
ics. Interactions occur unpredictably related to overlap-
ping molecular orbital, the electron density distribution or
steric interference can be solved by computational meth-
ods. The energy minimization and conformational analy-
sis are used interactively to optimize the geometry of a
molecule.40

The choice of method for energy minimization depends
on factors related to the size of the molecule, parameters of
availability and stored data and computational resources.
Molecular models generated by the computer are the result
of mathematical equations that estimate the positions and
properties of the electrons and nuclei, the calculations
exploit experimentally, the characteristics of a structure,
providing a new perspective on the molecule.40

The three-dimensional structural representation of drugs
into computer programs and the construction of molecular
models are important for learning the geometric charac-
teristics and molecular essential for the biological activity
of some drug classes. In the stage of design and three-
dimensional visualization should be gather fundamental
knowledge of organic chemistry such as stereochemistry,
nomenclature and reactivity to understanding the structure-
activity relationship of drugs.
In quantum chemistry the softwares more used are

Gaussian and GaussView that uses the laws of quantum
mechanics to predict the energies, structures and properties
and vibrational frequency of molecular systems (FRISCH,
2003).41

The GaussView 5.0 is a program that can work on
Windows and responsible for building the structures under
study, by viewing these as well as for generating the input
of the species under study for the program calculations–
Gaussian 03W. This includes an advanced molecular mod-
eler, which can be used for construction and molecular
dimensions of the three test.41

The Gaussian 03W is a program that can work on
Windows and Linux that performs computations used in
the study of reaction mechanisms, equilibrium geometries
of neutral molecules, radicals and ions, and the determi-
nation of physicochemical parameters. Appreciates struc-
ture, reactivity, thermodynamic properties, energy barriers
(transition states), conformational analysis, employing the
optimization of molecules and theoretical calculations of
vibrational spectra. From the optimization is obtained the
most appropriate structure to the molecule, whereas the
lengths and bond angles and power stabilization calculated
by E(RB= HF-LYP) ua.41

The density functional theory (DFT) is based on the
electron density. She gives the distribution of charges
in a molecule to assume an approximate Hamiltonian
with interaction between pairs exclusively under the Born-
Oppenheir approximation and after neglect relativistic
effects. The DFT has great computational speed while pro-
viding good accuracy.19

There are several functional in the DFT, in this work
we used the B3LYP, which is a functional hybrid. In 1988,
the model BLYP was proposed by Becke–Lee–Yang, but
with the increasing complexity of the compounds to be
studied today, the trend is the use of B3LYP, this is a
model that reflects the combination of term LYP corre-
lation with the density functional exchange Becke, B3.
In this introduction there are three parameters calculated
by Becke and determined by settings using the Hartree-
Fock method, which is based on corrections heat of for-
mation for a series of molecules.20

The DFT reputation as conjecture that the exact func-
tion is not known, therefore the calculated energy is only a
good approximation. Nevertheless, the existing functional
not give satisfactory results in cases of weak interactions,
anions (situations with scattering electronic cloud) and
electron delocalization.

4. MOLECULAR DESCRIPTORS
Obtaining properties (descriptors) depends on the molec-
ular level theory and method, and represents a means
of chemical information contained in the molecular
structure of the compound studied. This information is
transformed and encoded for lots of problems chem-
ical, pharmacological and toxicological studies on the
relationship between quantitative structure-activity and
structure-property (QSPR and QSAR). The molecular
properties take into account different aspects of chemical
information, this information can be through experiments
or theoretical calculations simple counting, consider the
entire molecule, fragments or functional groups, knowl-
edge of the 3D structure of the molecule or molecular
graphics his or her simply formula, information defined by
scalar values, vectors or scalar fields.42

Recently Santos et al. (2013),43 published in the
Journal of Computational and Theoretical Nanoscience,

Rev. Theor. Sci., 2, 1–25, 2014 7



Molecular Modeling: Origin, Fundamental Concepts and Applications Santos et al.

a prestigious journal in the interdisciplinary area, where
the impact factor is 0.932 (2011) an article entitled “Val-
idation of computational methods applied in molecular
modeling of artemisinin with antimalarial activity.” Where
we propose a combination of chemical quantum methods
and multivariate analysis to study the geometric param-
eters of artemisinin in the region endoperoxide of the
ring (1, 2, 13–trioxane), in order to be effective in select-
ing the method and level of theory when compared with
data crystallographic, aiming to classify and correlate. The
most important geometrical parameters selected by prin-
cipal component analysis (PCA) were O13C12, O1O2C3,
C3O13C12C12a and C12C12aO1O2. The results of PCA
showed that the model was built with three main com-
ponents (3PCs), explains 97.0861% of the total variance.
The level of theory HF/6-31G∗∗ show high similarity
with the experimental data assuming that the combina-
tion of ab initio method can be used for modeling the
molecular and for futures calculations of molecular prop-
erties structure of artemisinin and its derivatives anti-
malarial drugs with mechanism of action in the ring region
endoperoxide.

4.1. Map of Molecular Electrostatic Potential
The charge density of a chemical species describes the dis-
tribution of electrons responsible for the chemical behav-
ior of each species. To estimate the magnitude of this
charge is not an easy task, considering that a molecule
is a dynamic system and not a simple arrangement of
protons and electrons with positive charges with negative
charges. Thus, classical mechanics is unable to explain
this type of system. There are several methods of cal-
culating atomic charges available computer programs.44

The difficulty lies in the fact that calculation of the loads
are not obtained directly from the wave function.44 The
method of calculation of atomic charges most popular is
the Mulliken population analysis,45 but it is a method for
designating arbitrary loads, since, for performing these cal-
culations, the charge density between two atoms is split
evenly, not taking into account the electronegativity of
these atoms. Another method to evaluate the distribution
of the load is to adjust the molecular electrostatic poten-
tial, which is a property directly obtained from a calcu-
lation SCF (Self Consistent-Field) at a series of points
located at the centers atoms. Therefore, we define a set
of points around the molecule for calculating the electro-
static potential and a further adjustment is made to model
the point loads. From this reasoning, there are many meth-
ods derived from the electrostatic potential for the calcu-
lation of atomic charges.44 One method used to calculate
the loads arising from the electrostatic potential was devel-
oped by Chirlian and Franci.46 According to this method,
the potential is determined for a selected number of dots
arranged spherically around the molecule. The interactions
between ligand and receptor are closely linked to biolog-
ical mechanisms electrostatic—attraction, repulsion, load

transfers. Thus, charges are calculated at important posi-
tions and substituent groups in the molecules.
The MEP is one of the descriptors used in most stud-

ies and aims to reveal the size and location of the total
molecular electrostatic potential in the molecule. The sur-
faces of three-dimensional maps of molecular electrostatic
potential (MEPs) after superimposition is generated in the
molecule of a positively charged particle that under the
contact surface of the molecule van der Waals repulsion
shows a region representing a potential positive, blueness
and the region of negative potential in the molecule, rep-
resented by red color.
The electronic parameters are one of the main factors

that govern drug-receptor interaction, in this sense, the
map of molecular electrostatic potential (MEP) may be an
alternative approach in order to understand the electrostatic
contribution of these derivatives for biological activity.
To construct the MEP requires three steps: the con-

struction of the surface electron density of the molecule,
the construction of the surface electrostatic potential and
applying colors to denote the surface obtained potential
values.
One of the frequent topics of theoretical chemistry is

research to improve methods to elucidate the behavior of
molecules and other reactive chemical species. Among the
numerous existing reactivity indices the molecular electro-
static potential V �r� that is generated around a molecule
by its nuclei and electrons, is known for being a real phys-
ical property can be determined experimentally by diffrac-
tion methods, as well as computationally.25

The MEP at a given point (x� y� z) in the vicinity
of a molecule is defined in terms of the interaction
energy between the electrical charge generated from the
molecule’s electrons and nuclei and a positive test charge
(a proton) located at r . For the studied compounds, the
V �r� values were calculated as described previously using
Eq. (2)

V �r�=∑
A

ZA

�RA− r � −
∫ ��r ′�
�r ′ − r �dr

′ (2)

where ZA is the charge of nucleus A, located at RA, �(r
′)

is the electronic density function of the molecular, and r ′

is the dummy integration variable.
The molecular electrostatic potential (Fig. 1) has been

an important tool for analyzing processes of recognition
of a molecule by other types of interactions such as drug-
receptor and enzyme-substrate because of its potential by
being a kind that sees another in a process biological
recognition.
In Figure 1 the MEP intended to identify and key fea-

tures evaluate the compound from qualitative comparisons
of the form of molecular electrostatic potential in the
region of the ring 1, 2, 4-trioxane artemisinin (red color).
Since the geometric shape of the electrostatic potential
in the region of the ring 1, 2, 4-trioxane is similar for
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Fig. 1. Electrostatic Potential Map of artemisinin was calculated using
the Hartree-Fock (HF) method and HF/6-31G** level of theory. The MEP
was realized by the Molekel program.38

all active compounds, that is characteristic according to
the literature.47 Therefore, compounds having some struc-
tural similarity may have electrostatic potentials that allow
a being recognized by another, with similar biological
activities.25

Structure-activity relationship (SAR) indicates the
molecular structure modifications that increase the drug
effectiveness. In general, reports show that these modifi-
cations are made throughout small changes in the lead-
ing compound structure, followed by trials in laboratory
to quantify the variations in the biological activity due to
changes in the molecular structure.48

4.2. Energy Frontier Orbital (HOMO and LUMO)
A second category of quantum-chemical descriptors
widely used in studies SAR/QSAR is related to energy of
the frontier orbitals (HOMO and LUMO). The reason for
this relates to the fact that these properties provide infor-
mation about the character electron donor and/or electron–
acceptor compound and thereby forming a charge transfer
complex (CTC).49

The energy of Molecular Orbital Highest Occupied
Energy (HOMO) and the Molecular Orbital Energy
of Lowest Unoccupied (LUMO) are quantum-chemical
descriptors, which play an important role in chemical reac-
tions and the formation of several complexes of charge
transfer.
In Figure 2 we can see the region bounded by the

HOMO orbital measuring the character electron–donor
compound, and the LUMO measuring the electron accep-
tor character. From these definitions, two important fea-
tures can be observed: the higher the energy of the HOMO,
the greater the electron–donor capacity and the lower the
energy of the LUMO lower the resistance to accept elec-
trons. In this figure we observe that the HOMO is located
in the region of the ring which is the trioxane pharma-
cophore of the active molecules. When the rings are aro-
matic substituent or have high electron density, such as

Fig. 2. Orbital energy Homo (a) and Lumo (b) were calculated using
the Hartree-Fock (HF) method and HF/6-31G** level of theory. The
Homo and Lumo orbitls were realized by the Molekel program.38

in carbonyls, amines and amides, the most pronounced
HOMO will be strongly influenced to conduct stereo elec-
tronics side effects that might impair the pharmacological
activity of the compound.
The energies of HOMO and LUMO have been used for

some decades as indices of chemical reactivity and are
commonly correlated with other indices, such as electron
affinity and ionization potential.50–54

The energy of HOMO is directly related to the ioniza-
tion potential of the compound and characterizes the abil-
ity of the molecule to perform nucleophilic attacks. The
LUMO energy is directly related to electron affinity, char-
acterized by the susceptibility of the compound in relation
to attacks by nucleophiles.55 The difference between the
orbital energies of HOMO–LUMO (gap) is an important
indicator of molecular stability. Molecules with low band
gap value are generally reactive, while molecules with a
high value of gap indicating high stability of the molecule
in the sense of low reactivity in chemical reactions.56

gap= EHOMO−ELUMO (3)

Lobato et al. (2012),57 computational calculations per-
formed with the aim of studying the reactivity and sta-
bility of isomeric products in reactions of halidrification
in alkenes by analyzing the orbital border (HOMO and
LUMO), index of chemical reactivity, affinity electronics
and ionization potential. Where the product more stable,
among the investigated was 2-Iodo-2-methylpropane hav-
ing a more stable variation between normal and branched
chain 1.067% stability.

4.3. Descriptors Polarizability (�), Hardness (�)
and Molecular Softness (S)

Descriptors are very important in studies of SAR/QSAR,
it can be correlated with lipophilicity, molar volume and
impediments stereos, aiding the interpretation of the mech-
anisms of interaction between a compound and their
respective biological receptor. The concept of chemical
hardness and softness (or softness) molecular was formu-
lated in accordance with the concept of acids and Lewis
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bases.58 For a basic “soft” (or softer) the donor atom has
high polarizability and low electronegativity, and can be
easily oxidized, or is associated with occupied orbitals
(HOMO) of high energy, making it more effective interac-
tion with the LUMO of soft acids (the energy difference
between the HOMO and LUMO is small).
In the interaction between a basic “hard” and an acid

“hard” there is a large energy difference between the fron-
tier orbitals HOMO and LUMO, making the electronic
transition. For both categories of acids, have the follow-
ing characteristics: the acids “soft” (or soft), the accep-
tor atom has small positive charge, a large volume, and
various other excitable electrons easily, in acids “hard,”
the atom acceptor has high positive charge, small size
and has no other electrons easily excitable. This classi-
fication was made according to the following rule: acids
“soft” with bases “soft” (character covalent interactions)
and acids “hard” with bases “hard.” The difficulty of the
principle of acids and bases (hard and soft) is in rela-
tion to quantification. For this reason we developed a
way to calculate molecular hardness (�� and softness (S)
from measurements of ionization potential (IP) and elec-
tron affinity (difference of total energy between a neutral
and anion species, AE) or from the energies of HOMO and
LUMO:59

� = 1
2
�PI −AE� (4)

� = 1
2
�ELUMO−EHOMO� (5)

S = 1
�

(6)

The ionization potential of an atom is a measure of
the force with which an electron is bonded to an atom.
The first ionization potential (IP) of an atom is the energy
needed to remove an electron from that atom at an infinite
distance (A → A+ + e−). Low ionization potential values
for active compounds may indicate possible mechanisms
for transferring charges in the ligand-receptor interaction,
and may also indicate that the ionic form of the substance
it shows biological activity.60

The electronegativity of an element is a measure of the
strength of an atom to attract electrons to itself involved
in a binding which this atom is also involved.45 This prop-
erty can be used to estimate the ability of a molecule to
attract electrons to another, when there is an interaction
between these two molecules. Mulliken electronegativity
(�� Calculated as:48

� = 1
2
�−ELUMO−EHOMO� (7)

It is possible therefore estimate the hardness or softness
of a molecule. These values are expressed in terms of the
ionization energy of the atom and its neutral anion. There-
fore, molecules that have a high ionization potential and

high electronegativity have high absolute hardness, and
the higher the hardness, the lower the smoothness of the
molecule. Thus, it can be said that the hardness represents
the resistance of a molecule to deformation and softness
represents the ease with which a molecule is deformed.
The smaller the higher the hardness or softness, the lower
the amount of energy required for the transition of an elec-
tron of the HOMO to LUMO.61

Lobato et al. (2011)62 carried out studies of isomeric
products in chain reactions of halidrification in alkenes
using computational methods at the HF/3-21G level of the-
ory for the determination of molecular properties, includ-
ing: polarizability (��, hardness (��, molecular softness
(S), bond length (C2-X), total energy and the construc-
tion of maps of molecular electrostatic potential of the
substrates, reagents and products. Aiming to analyze the
stability of isomeric products studied.

4.4. Molecular Dipole Moment (�)
This is a property that measures the magnitude of charge
when displaced atoms of different electronegativity are
interconnected. The direction of the dipole moment of a
molecule is based on the relative electronegativities of the
atoms of this molecules and value is obtained by the vec-
tor resultant of the dipole moments of each bond present
in the molecule. The presence of substituents with differ-
ent electronegativity alters molecular properties as acidity
and basicity of a compound so that the dipole moment can
answer questions about the same reactivity.63�64

The polarity of a molecule is important for various
physicochemical properties and thus, whereas the drug and
receptor interaction occurs because of the differences in
charges with opposite values, many descriptors have been
proposed to quantify the effects of polarity, among which
the dipole moment of the molecule (which reflects only
the overall polarity thereof) is the most used. The elec-
tric dipole moment (m) calculated the �= ���, where � is
given by:

�=
∫
��r�rdr (8)

and r�r� stands for electrical charge density.

4.5. Principal Quantum-Chemical Descriptors
Utilized in Studies SAR/QSAR

The quantum-chemical descriptors are fundamentally dif-
ferent from measures obtained experimentally, although
there is some overlap naturally. A basic disadvantage of
quantum-chemical descriptors is the failure to reproduce
stereo effect.30 A summary of the principal terms used
in quantum-chemical studies SAR/QSAR is presented in
Table I.
The energy parameters such as electron energy, total

energy and heat of formation, are also widely used
for correlating structure and activity. The electronic
energy is determined by means the Born-Oppenheimer
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Table I. Summary of the principal quantum-chemical descriptors used in studies SAR/QSAR.

Nome Definição

QN Liquid atomic charge on atom N
Qmin�Qmax Atoms charges more negative and more positive
QAB Total charge of the group containing the atoms A and B∑

q2
A Sum of the squares of the charge densities in atoms of type A

qE�A qN�A Nucleophilic and electrophilic electronic charge calculated from the occupied and unoccupied orbitals
QB� QA Sum of absolute values of the charges of all the atoms in a given molecule or functional group
Q2

B� Q
2
A Sum of squares of the charges of all the atoms in a given molecule or functional group

Qm Mean of the absolute values of the charges on all atoms
	HOMO, 	LUMO Occupied molecular orbital energy of the highest energy (	HOMO� and unoccupied molecular

orbital energy of the lowest energy (	LUMO�


� = �R−�T Hardness activation states R and T represent the transition state and reagents
qN� , qNp Electron density � and � in atom A
QA�HOMO�QA�LUMO Electron density HOMO/LUMO in the atom A
f E
r =∑

(CHOMO� n�
2 Electron density of electrophilic frontier atomic, CHOMO� n are the coefficients of the

atomic orbitals Xn in HOMO
f N
r =∑

(CLUMO� n�
2 Electron density of nucleophilic frontier atomic, CLUMO� n are the coefficients of the

atomic orbitals Xn in LUMO
F E
r = f E

r /	HOMO F N
r = f N

r /	LUMO Índices of electron density of frontier∑
SE�A�

∑
SN�A Sum of nucleophilic and electrophilic super displacement∑

�AA Sum of auto polarizabilities atomic
A Molecular polarizability
�= 1/3(aXX +aYY +aZZ� Mean polarizability of the molecules

2 = 1/2���XX −�YY �

2 Anisotropy of the polarizability
+ ��YY −�ZZ�

2 + ��ZZ −�YY �
2�

p =∑N
�=1 �QA�/N Polarization of the molecule, the sum of the atomic charges of all atoms in the molecule

�char��hybr Components charge and hybridization dipole moment
Dx� Dy� Dz Components of the dipole moment along the axes

 Polarity submolecular parameters (greater difference in charge of electrons between two atoms)
D =∑

AB �QA−QB�/NAB Indices dipole local sum over all pairs of bonded atoms
T Quadrupole moment tensor
ET Total energy
Eb =

∑N
i ENi −ET Bond energy


H �
f Enthalpy of formation


�
H �
f � Heat of formation relative

Eprot Protonation energy (energy difference between the protonated form and the sum of the
energies of form neutral and of separate proton)

EHidrat Hydration energy (energy related to the stability of different molecular
conformations in aqueous solution)

RM Molecular refractivity (property that depends on the structure of the bioactive substance
and expresses the character lipophilic and electronic of substituent groups present in the molecule)

approximation, i.e., assuming a fixed position of the nuclei,
the Schrödinger equation is resolved in order to find
the electronic energy of the molecule. This procedure
is repeated for different configurations of fixed of the
nuclei (through interactions SCF). The nuclear configu-
ration which corresponds to the minimum value of the
energy geometry is the of equilibrium geometry of the
molecule.65 The total energy is often utilized to estimate
the stability of a chemical species, and corresponds to the
sum of repulsion energy nuclear with the electronic energy.
As the total energy, heat of formation of a molecule is
also used to estimate the chemical stability. From the total
energy of the system, we calculate the energy of atom-
ization from subtracting the total energies of the atoms in
their stoichiometric ratios. The heat of formation (
Hf �
can be calculated using the enthalpies of atomization of
the atoms and the energy of atomization.66

5. ORIGIN OF QUANTITATIVE
STRUCTURE-ACTIVITY RELATIONSHIP

In 1963, Hansch and Fujita67 observed that the biologi-
cal activity of some series of compounds correlated with
lipo-hydrophilicity of the molecules, then the technique
developed was expanded to other classes of compounds,68

exhibiting equally elevated correlation. These studies
resulted in the quantitative analysis of chemical struc-
ture and biological activity (QSAR-Quantitative Structure-
Activity Relationship), whose greatest interest is providing
the rational development of a novel compound, particularly
a better drug, avoiding random synthesis and biological
testing of new onerous molecules. A mathematical model
developed by Free and Wilson69 also contributed to the
QSAR studies of that era. Currently, most of the mod-
els constructed based on QSAR descriptors (parameters
that correlate with the biological activities of molecules)
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threedimensional which encode the molecular properties,
such as steric and electrostatic, based on the spatial struc-
ture of a class counterpart of molecules.
Studies of quantitative relationships between chemi-

cal structure and biological activity (QSAR), or between
chemical structure and some type of physicochemical
property (QSPR), are of great importance in modern chem-
istry and biochemistry. The central objective in studies of
QSAR/QSPR is rationalizing the search for compounds
with desired properties using chemical intuition and expe-
rience in a way mathematically quantified and computer-
ized. Since it the correlation between the structure/property
and activity is found, large numbers of compounds, includ-
ing those that have not yet been synthesized, can be
readily examined on the computer in order to select struc-
tures with desired properties. Thus, it is possible to select
the most promising compounds for synthesis and test-
ing laboratories. It can be said that the studies involving
QSAR/QSPR are considered excellent tools to accelerate
and succeed in development of new molecules to be used
as pharmaceuticals, materials, additives and other pur-
poses. As is not easy to find correlations structure-activity-
property, the exponential growth in the number of papers
involving studies QSAR/QSPR clearly demonstrates the
rapid progress in this area.70–75 To obtain a signifi-
cant correlation, it is critical that appropriate descriptors
are employed, whether theoretical, empirical or derived
from experimental data. Many descriptors reflect sim-
ple molecular properties and can provide information on
the physico-chemical nature of the activity/property under
study.76

Many studies employing quantum-chemical descriptors
are realized in the area of QSAR more than QSPR, ie the
descriptors have been correlated with biological activities
such as inhibition of enzymatic activity and/or hallucino-
genic activity.77�78 In part this is because, historically, the
search for quantitative relationships with chemical struc-
tures began with the development of theoretical methods
for drug discovery. The employment of quantum-chemical
descriptors has great utility for correlating the reactivity
of organic compounds, partition coefficient octanol/water
chromatographic retention indices and various other phys-
ical properties of molecules.76

In recent decades, many significant advances were
observed in the area of QSAR, stand out: developing
methods dimensional (2D QSAR)79�80 three-dimensional
(3D QSAR),81 in addition to methods that involve more
advanced molecular information (4D and 5D QSAR), with
the main difference between these methods is related to the
type of molecular information used for building of quan-
titative model.82�83 Analyzes using more advanced tech-
niques such as QSAR 3D and 4D, require knowledge of
the molecular conformations for three dimensional align-
ment, assuming that the biological response is directly
associated with the interactions between the bioactive
molecule and biological receptor, these being described

interactions and represented by their stereos fields, electro-
static and other three-dimensional fields. Thus, obtaining
quantum-chemical properties is important to the fields of
molecular generating and hence the development of QSAR
models 3D and 4D of good quality.
The methods CoMFA (Comparative Molecular Field

Analysis)84 and CoMSIA (Comparative Molecular Simi-
larity Indices Analysis)85 stand out as 3D-QSAR methods
due to the numerous published papers using these method-
ologies. These largely accepted methods that are the most
widely discussed in 3D-QSAR studies and require three
dimensional alignment of the ligands and therefore there
is a need structural similarity for overlapping of the chem-
ical structures, therefore, must meet a series congener.
Formalisms 4D,86 5D87 and 6D88 have been applied to
incorporate new degrees of freedom (dimensions), so that
a more refined analysis on the adaptation of the active site
of an enzyme to the topology of the ligand, and vice versa,
can be better represented. However, molecular descrip-
tors 2D, usually physico-chemical descriptors referred to
in classical QSAR analyzes not have been shown to be
lower than those 3D descriptors being extremely potent
as the convenience and simplicity of the calculations.89

In fact, the need for a conformation of the linker scan-
ning and a comprehensive three-dimensional alignment of
structures that may not correspond to the forms of bioac-
tive molecules, reflects the main disadvantages of the tech-
niques associated with the methodology nD, so are an
approximation.
A predictive approach equally, but much faster, cheaper

and simpler to operate, was developed in 2005 and
named MIA-QSAR (Multivariate Image Analysis applied
to QSAR).90 The MIA descriptors have been success-
fully applied not only to correlate chemical structures with
biological activities,91–96 but also with physical properties
such as boiling temperatures,97 chemical shifts98 and elec-
trophoretic profiles.99 The method is based on using pixels
as image descriptors; how pixels can be processed numer-
ically as binary, white color digit equals 765 and the black
pixels digit 0, according to the RGB color system. In MIA-
QSAR, the images correspond to the chemical structures
drawn by some program to design molecules such as
ChemDraw or ChemSketch. Structural modifications or
changes in position of the substituents on a series con-
gener molecules correspond to changes in the coordinates
of the pixels of the image, and these changes explain the
variance in the Y block, the block corresponding to the
dependent variables (biological activities, for example).
There aren’t advices of some rare manuscripts and

reviews of examination boards show some skepticism
about the existence of meaning physicochemical descrip-
tors for MIA and therefore on them can be correlated
with some property chemical, physical or biological. Some
even linked the results of an MIA-QSAR analysis by
chance that the correlation could exist between students’
scores on a test with the alphabetical order of their names,
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which would be a completely arbitrary assumption. We
reinforce the assertion that MIA descriptors may encode
the chemical, physical and biological, the chemical and
physical description must be incorporated in any manner
in which substituents are represented. For example, the
MIA descriptors may encode steric effects (substituents
of organic molecules occupying a large area in the space
devoted to the design of structures), stereogenic centers
(wedge or dashed lines to represent links for either forward
or backward relative to a chiral carbon).100

6. MULTIVARIATE ANALYSIS METHODS
When measurements are made on a number of objects, the
results are usually arranged in a matrix, which is called
data matrix. Measures (in our study the molecular descrip-
tors and biological activity) are placed in columns, and
objects (in our case the compounds studied) are associated
with the lines. For a matrix of multidimensional data, mul-
tivariate statistical methods are needed to understand these
data in its entirety.
After obtaining a given number of molecular parame-

ters, it becomes necessary to use methods that allow the
simultaneous analysis of all parameters obtained since,
initially, the main factors responsible for the biological
ligand-receptor interaction are not known. Thus, the multi-
variate methods of analysis are very useful tools in studies
of this type, i.e., analysis of data sets with a high number
of properties, which makes data interpretation.
Some methods which often use multivariate data anal-

ysis are: principal components analysis (PCA) has been
widely used in chemical and biological problems, and the
main aim of this analysis is to show the data in a multidi-
mensional space of low dimensionality with the minimum
of loss total information;101 hierarchical cluster analysis
(HCA), partial least squares regression (PLS) method of
K-Nearest Neighbor (KNN), stepwise discriminant anal-
ysis (SDA) and independent models of similarity using
principal component (SIMCA–Soft Independent Modeling
of Class Analogy).102–114

6.1. Analysis of Principal Components (PCA)
Principal component analysis is a method of data compres-
sion based on the correlation between the variables, this
data compression generates a small set of variables which
are called principal components and these are orthogonal
between Themselves, so that the correlation between vari-
ables does not limit its application, unlike the multiple
linear regression that is sensitive to the presence of highly
correlated variables, because it makes the regression coef-
ficients unstable and without significance.115�116

From the mathematical point of view the model obtained
with principal component analysis is written as:

yij =
p∑

k=1

Pikakj +
m∑

k=p+1

P
�0�
ik a

�0�
kj (9)

where Pik are called principal components (PCs), and also
are referred to as “scores” and correspond to the charac-
teristics of the compounds. Pik are orthogonal vectors, and
are determined so that the data matrix is replicated. akj

represents the weight, i.e., a measure of the contribution of
the k PC with the j variable. A high value of akj demon-
strates a high importance of k PC for the j variable. Thus
the j variable has a high contribution to the k PC, so akj

are also called “loadings.”101

The number of PCs that can be extracted from the data
matrix equals the number of original variables and with
this number of components the data matrix can be repro-
duced exactly, but this is not the desired result, since it
does not lead to reduction of dimensionality the matrix.
What aims is to find a number of PCs so that the origi-
nal variables are represented with the minimum of loss of
relevant information.101

6.1.1. Staggering
A way of treat all variables with the same importance is
standardizing them by autoscale according to the following
equation:

Y ′
jm = �yjm− ȳj �

sj
(10)

where ȳjm is the mean of variable j to the object m. Vari-
ables autoscaled have an average equal to zero and unit
variance represented by Eqs. (11) and (12) respectively.

ȳj =
∑n

j=1 y
′
jm

n
= 0 (11)

s2j =
∑n

k=1 �y
′
jm−y′i�

n−1
= 1 (12)

6.2. Hierarchical Cluster Analysis (HCA)
Another method of multivariate analysis is of great impor-
tance hierarchical cluster analysis, its aim is to show the
data in such a way to accentuate their natural group-
ings and standards. As the principal component analysis,
the results of hierarchical cluster analysis are qualitative,
being arranged in the form of a dendrogram thus allowing
displaying samples (the compounds studied in our case) or
variables (molecular descriptors in our study) in a space
two-dimensional.115

In hierarchical cluster analysis the distance between
samples (the compounds studied here) is calculated and
transformed into a similarity matrix S, whose elements are
the similarity index. So for two samples m and n, the sim-
ilarity index is written as:

Smn = 1− dmn

dmax

(13)

Being Smn an element of S, dmax is the maximum distance
for a pair of samples, dmn comes to be the Euclidean dis-
tance between samples m and n calculated as:

dmn= ��xm1−xn1�
2+�xm2−xn2�

2+···+�xmh−xnh�
2�1/2 (14)

With xij being a matrix element of the original data.115
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6.3. Method of Partial Least Squares (PLS)
One of the most promising methods of multivariate anal-
ysis is the partial least squares (PLS), because hundreds
or thousands of independent variables (the bloc X, in our
study the molecular descriptors) may be correlated with
one or several dependent variables (bloc Y in our case the
biological activity). In the PLS analysis the resulting vec-
tors are slightly displaced from their original positions, so
that the correlation of corresponding vectors derived from
bloc X and Y be optimized.117

Through the PLS method is possible obtain a description
of the dependent variable Y (biological activity) as a linear
combination of molecular descriptors, through the princi-
pal components being they are not correlated. To ensure
that the principal components obtained are important for
biological activity, the bloc Y (biological activity in our
study) is used for finding the standard within the bloc X
(molecular descriptors in our case) that is correlated with
the Y bloc, or is the principal components are optimized
to best describe the relationship between the bloc X and
Y both being the principal components now called latent
variables and are used to model the bloc Y.116

The PLS model finds new variables, K latent variables,
which are also called “scores” and are represented as tk
(k = 1�2�3� � � � �K). The “scores” are linear combinations
of original variables js weighting coefficients W ∗

vk (k =
1�2�3� � � � �K).

tik =
∑
k

W ∗
jkxik (15)

The “scores” are good predictors of the bloc Y, then the
PLS model can be written as:

Yim
∑

aCmatia+ fim (16)

in matrix form has the following form:

Y = TC ′ +F (17)

combining Eqs. (15) and (16) we obtain the model as a
regression model:

yim =∑
aCma

∑
kW ∗

jk+ fim (18)

where the term fim represents the deviation between the
Observed and predicted data (in our study the biological
activity).118

In PLS analysis results can be transformed into regres-
sion coefficients, also called vector regression, the vari-
ables of the bloc X (the molecular descriptors in our
study), these indicate what the most important descriptors
in model building.116�117

After building the PLS model is necessary to evaluate
it and this review is to ascertain if the specification of the
model fits the data adequately predicted. This review is
divided into three parts: (1) evaluation of the degree of fit,
(2) evaluation of degree of significance and (3) evaluation
the degree of predictability.119

6.3.1. Evaluation of Degree of Fit of the Model PLS
The evaluation of the degree of adjustment is done by cal-
culating the following statistical parameters: (a) correlation
coefficient R, (b) correlation coefficient adjusted R2

adjusted,
(c) standard deviation and (d) analysis of the waste, with
mathematical expressions are shown respectively below:

R2 = 1−
∑

�ypredicted−yExperimental�
2

∑
�ypredicted−ymean�

2 (19)

R2
adjusted = R2−

(
k−1
n−k

)
�1−R2� (20)

where n, in Eqs. (20) and (21), is the number of samples
included in the model (in our case the number of com-
pounds included), k is the number of variables (molecular
descriptors in our study) included in the model.

s2 =
∑

�yExperimental−ypredicted�
2

n−2
(21)

�yExperimental−ypredicted� (22)

For a QSAR model to be accepted coefficient R must be
greater than 0.9 for tests of biological activity in vitro and
greater than 0.8 for testing in vivo.117 The correlation coef-
ficient adjusted which considers the number corrections to
the number of variables and number of compounds used,
must be the greatest possible and it is expected that the
standard deviation and the waste is closest to zero.119 But
the standard deviation s cannot be greater than the stan-
dard deviation of biological data, around 0.3 which is the
mean error of many biological data whereas for in vivo
biological test this value should be less.117

6.3.2. Evaluation of Degree of Significance
of the PLS Model

The degree of significance is assessed by performing val-
idation tests, in our case we tested only the statistical
significance of the correlation coefficient R2 through the
hypothesis test called F test that checks how much of
the variability of the Y bloc (biological activity) can be
explained by the bloc X (molecular descriptors included
in PLS model). Order to validate the correlation coeffi-
cient through the test F, the mathematical expression being
shown below, it is necessary to compare the value of F
obtained in constructing the PLS model with the tabulated
value.119

F�k�n−k−1� =
[
R2�n−k−1�
k�1−R2�

]
(23)

where n in Eq. (23) corresponds to the number of sam-
ples included in the model (in our case, the number of
compounds included), k is the number of variables used
to construct the model (in our study, molecular descrip-
tors). The value of F shall be four to five times the value
tabulated, thus demonstrating that the model is statistically
significant and useful for predictive purposes.120
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6.3.3. Evaluation the Degree of Predictability
of the PLS Model

The cross-validation procedure should be used to evalu-
ate the degree of predictability of the QSAR model, and
select the model that has greater predictive ability. The
cross-validation is performed so that one or several objects
(compound studied) are eliminated from the set of data,
either randomly or systematically.117 The cross-validation
is done in the following steps:
(1) delete one of the model compounds,
(2) reconstruct the model without this compound,
(3) use the model to calculate the value of the biological
activity of the compound excluded,
(4) obtain the residue between the experimental value of
the biological activity and the predicted value for the com-
pound excluded;
(5) remake steps (1)–(4) for the other compounds, one at
a time.119

The evaluation of the degree of predictability is done by
calculating some statistical parameters that show the pre-
dictive quality of the PLS model: sum of squares of devi-
ations (PRESS), standard deviation of the cross-validation
(SPRESS�, standard error of prediction (SEP) e o correlation
coefficient of the cross-validation (Q2�, with the respective
equations are shown below:

PRESS=∑
�yExperimental−ypredicted�

2 (24)

it is ideal that the value of the PRESS not increase with
the number of latent variables.121

SPRESS =
�PRESS�1/2

n−k−1
(25)

where n in Eq. (25) is the number of samples included
in the model (compounds) and K is the number of vari-
ables used to construct the model (molecular descriptors),
SPRESS is obtained as a criterion for the optimum number of
latent variables, the SPRESS lowest value indicates the opti-
mal number of latent variables,117 a model with excellent
predictive capability submit SPRESS close to zero.119

SEP=
√

PRESS

n
(26)

in Eq. (26), n is the number of samples (compounds)
included in the QSAR model, the SEP is different of
SPRESS because not consider the degree of freedom in the
calculation.117 It is also used as the main criterion for
checking the degree of PLS prediction model.116

Q2 = PRESS∑
�yExperimental−ymean�

2
(27)

This parameter is used to evaluate the statistical qual-
ity of the PLS model,115 it describes the amount of vari-
ance in y can be predicted, its value ranges from zero

Fig. 3. Classification of K near neighbors belonging to three classes.

to one (0 to 1), where one (1) signifies a model per-
fect, and zero (0) a model without relevance.122 To vali-
date a latent variable is necessary that the value Q2 does
not decrease with increased latent variables, but increase
with each latent variable.121 A PLS model with high pre-
dictability for objects (compounds) are not included in the
model should display the value of Q2 nearest one (1) as
possible,119 but a value above 0.3 (Q2 > 0�3) is generally
satisfactory.123

6.4. K-Nearest Neighbor (KNN)
An unknown object can be classified124 by investigating
objects of their close neighbors of K which class the group
is known. To find a close neighbor of the object is nec-
essary to compute the distance (usually Euclidean dis-
tance) to every object in the dataset. An unknown object is
assigned to the class that has the most among the K neigh-
bors (Fig. 3). Frequently used values for K are between
one and ten. This approach is similar to a spectral library
search, although more complicated (nonlinear). Similar
measures are used for research in the library and usually
point to identify the object in place of the standings. The
method KNN can also be compared as a product for esti-
mating the location probability density for the class.
Moreover, this mathematical simplicity of KNN classi-

fication has some advantages: no ordering on the distribu-
tion of data is required, the class of objects need not be
linearly separated, he is a multiclass method, and it is not
necessary to classify the training.
A KNN classification consists for any vector object

assembly training, this, however, requires a computational
time rather large even for data set size medium, the KNN
classification is often used as a reference method.

6.5. Stepwise Discriminant Analysis (SDA)
Stepwise discriminant analysis (SDA) is a method that can
be used for discrimination (recognition or classification)
and prediction samples. Its main purpose is to determine
discriminant functions, which represent linear combina-
tions of variables calculated.125 The procedure used in the
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SDA method is to construct the discriminant functions
(a function for active compounds and one for inactive)
adding one variable each time until obtaining the end dis-
criminant functions based on the set of variables which
best discriminates between the groups of compounds. This
method is useful to select the most relevant variables
to separate the compounds into different groups (often
referred to as the discriminating power of the variables),
since constructs discriminant functions using a variable
time until the best discriminant function is obtained. After
statistical validation of the model through this procedure,
the discriminant functions can be used to make predictions
with unknown compounds.

6.6. Soft Independent Modeling of
Class Analogy (SIMCA)

It is a method for classification124 that considers informa-
tion of population distribution estimates a confidence level
of classification and may provide new samples as belong-
ing to one or more classes or no classes. To make the
classification the SIMCA uses the space of the principal
components of each class. Thus, the n class shall be rep-
resented by Eq. (28).

Xn = T̄nP̄
t
n+En (28)

where Xn are the class data, Tn the matrix containing coor-
dinates in the principal component of the class n, Pn the
linear transformation matrix and En the matrix of residues.
In the construction of the SIMCA classification model cal-
culates for each class separately, the standard deviation of
residues. For the space described by the principal com-
ponents are computed variances of samples in each axis.
These two parameters are used for classification of new
samples. The objective of SIMCA is to create a limited
space for each class. This can be better understood for a
class described by two principal components. In geometric
terms, the residues of this class correspond to the distances
of the samples to the plane of the main components. Thus,
the calculation of the standard deviation of residues orig-
inates two planes parallel to these components, i.e., one
above and one below. Considering the variance in each
main component and planes, for the standard deviation of
residues, one can say that the class is bounded by a box,
a hyper box in case of three or more components and a
cylinder for a main component.
The classification of a new sample is made by its pro-

jection on the main components of each class, where
the variances are calculated and its residue. These two
are compared by F tests with those already deter-
mined for constructing the model. Thus, those class
where the residue is less than or equal to, the same is true
for the variances, the sample is classified positively. With
this, the sample may be placed in one or more classes.
Otherwise, larger deviation or variance, the sample is clas-
sified as belonging to the class not.

Fig. 4. Graphical representation of a matrix with three columns and
divided into two classes. x1, x2 and x3 represent the columns of the
matrix, the first principal component PC1, PC2, the second principal
component v1 variance in PC1, v2 variance in PC2, the standard deviation
of residuals is represented by e.

The Figure 4 shows an example of a matrix with three
columns, divided into two classes. The first is represented
by two major components, where v1 is the variance in the
first principal component PC1, v2 variance in the second
component PC2 and the standard deviation of residues are
represented by:

7. CASE STUDY ON MALARIA
Malaria is a potentially serious infectious disease caused
by parasites (protozoan of the genus Plasmodium) that
are transmitted from one person to another by the
bite of female mosquitoes of the genus Anopheles. The
transmitters of human malaria are insects of the order
diptera, family Culicidae and the genus Anopheles. This
genus comprises about 400 species, of which only few
have importance for the epidemiology of malaria in each
region. Among the different species of malaria, malaria
caused by Plasmodium falciparum and Plasmodium vivax
are the most widespread. The malaria produced by Plas-
modium vivax, are rarely fatal, however, symptoms tend
to recur periodically, even after long periods of treatment
(BRASIL, 2012).
The malaria is one of the most common diseases in

tropical and subtropical countries with more than 300 mil-
lion infections and millions of deaths from malaria occur
worldwide each year. The rapid spread of resistance to
quinoline antimalarial made malaria a serious global prob-
lem, so it is essential to seek new drugs against malaria
and understand its mechanism of action for the treatment
of patients.127 Where, pathways rule, institutions do not
have the economic resources that can be used to access
high technology which provides the adequate development
of research aimed at solving the problem.128
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7.1. Design and Development of
New Antimalarial Drugs

Despite several studies that have been done many years
ago, today does not exist a vaccine that confers protection
against malaria satisfactory. It is common to confuse the
vaccine against yellow fever as though it were against the
malaria (antimalarial), but only the first exists, is effective
and fundamental to take it when you travel to yellow fever
endemic areas, which generally overlaps with the malarial
areas (BRASIL, 2012).
The processes for obtaining new drugs have changed

much over the years. Until approximately the decade eight-
ies, new drugs were discovered through tests black–box
type in cells or models–animals. This traditional method of
drug development, also called blind triage, consists of test-
ing several micromolecules randomly in biological assays,
without any knowledge of the mechanisms of action and/or
interaction of the ligand molecule. Although most of the
drug therapeutically useful available today have been dis-
covered through this process gradually this methodology
proved to be inefficient due to the ever smaller probabil-
ity of finding a new drug, being necessary to test millions
of compounds in some cases. This fact resulted in a great
increase in the time and costs involved in the discovery
and development of new drugs.129�130

The impossibility of removing the vector of malaria
transmission requires the necessity of new agents that
may have a novel mechanism of action. Therefore, the
search for new compounds with effective action to com-
bat Plasmodiumfalciparum has high priority due to its
severity becomes an urgent mission of global research
programs.131

In order to plan a drug applies one of the fol-
lowing strategies: the rational design and molecular
modification.132 The molecular modification consists in
considering a compound of known chemical structure and
biological action proven as a model or prototype, synthe-
size and test new compounds which are congeners, homo-
logues or structural analogues of the drug matrix.132 This
method when used requires high time and high financial
investment in obtaining a new drug.
The implementation of rational design requires informa-

tion from different areas of human knowledge, especially
those related to electronic levels of the drug, biological
activity, physicochemical parameters, such as: hydropho-
bic, steric and electronic, related to biological activity.133

The Figure 5 shows a flowchart with several steps of
Rational Drug Design Based on Structure (RDBE). The
first step constitutes the appropriate choice of therapeu-
tic target. The target molecular bioreceptor or may be
a protein related disease for which is desired develop a
chemotherapy treatment, where function shall be blocked
or activated. After identifying the molecular target, the
three-dimensional molecular structure of the biorecep-
tor needs to be obtained. The molecular structures

Disease Identifying the molecular target

Structure 3D
(X-Ray, RMN, Comparative Modeling)

Computational
screening

Bank of compounds

Docking of the
compounds selected

Tests in vitro and in
vivo

Strutural Modifications

Clinical tests DRUGS

Fig. 5. Steps of rational drug design based on structure.

may be obtained using experimental techniques, such as
X-ray diffraction in crystals and nuclear magnetic res-
onance (NMR), or by theoretical methods as compara-
tive modeling.134 In this step, the docking methodologies
(drug-receptor interaction) need to be faster than those
used for the refinement of compounds prototypes. Large
banks of molecular structures of ligands may contain mil-
lions of molecules are tested against molecular target with
the use these methods in order to identify compounds pro-
totypes. When a promising compound is found, the medic-
inal chemist analyzes the modifications that can be made
in the molecule, so that the desired biological response
is potentiated. In this phase, enter the scene more accu-
rate docking methodologies, which aim to identify both
binding conformation as quantify more precisely the bind-
ing affinity receptor–ligand, aiming an optimization of
promising molecules selected. In vitro and in vivo tests are
conducted to validate and guide the optimization of com-
pounds prototypes and so that other characteristics such as
toxicity, are analyzed.134

From among the various techniques used in ratio-
nal drug design, we can relate: design technique with
the aid of computing, principally using physicochemical
parameters involved in biological activity and methods
of quantum chemistry to determine the most promising
compounds in a series.48�133�135�136

7.2. The Therapy of Malaria
In medicinal chemistry, the term “structure-activity rela-
tionship” comprises studying the effects that the chemical
structure of a compound (ligand) may cause during their
interaction with the biological receptor, and consequently
rationalize the main factors that govern this interaction.
The interactions of a drug with its biological receptor
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are determined by intermolecular forces, i.e., interactions
lipophilic, polar, electrostatic and steric. Therefore, sub-
stances showing therapeutic properties when interacting
with a specific target (an enzyme, a receptor, an ion chan-
nel, a nucleic acid or other biological macromolecule)
should have a three dimensional structure so that the pro-
visions of their functional groups promote greater comple-
mentarities to the binding site. This can be summed up as
follows: how much better the “Docking” and the comple-
mentarity of the surface properties of a drug, greater its
affinity and greater may be its biological activity.117�137

To describe the types of interactions between a biolog-
ical receptor and its ligand may be used an extensive set
of molecular properties, since these properties are directly
related to intermolecular forces involved in ligand-receptor
interaction, even as are related to transport properties and
distribution of drugs.
The molecular descriptors represent an important tool

for predicting properties of substances, classify chemical
structures or search for similarities between them.138–140

Different descriptors have been introduced in recent years
and the number continues growing, since it is believed
that with this increase, significant problems in studies on
structure-activity relationships (SAR) would be solved.141

The treatment of malaria was employed by traditional
Chinese medicine for more than 2000 years. The medicine
used artemisinin (qinghaosu) is extracted from the plant
Artemisia annua L, used in combatting of 52 species of
diseases in People’s Republic of China.142

Artemisinin (qinghaosu) has a single structure (Fig. 6)
having a lactone stable endoperoxide (1, 2, 4-trioxane)
sesquiterpene totally different from the previous anti-
malarial in its structure and mode of action, being isolated
from Artemisia annua is a compound of remarkable life
and economic antimalarial effective against Plasmodium
falciparum and cerebral malaria.127

Fig. 6. Artemisinin (structure) and the region essential for expression of the biological activity (pharmacophore). The Structures were visualized
using the ChemSketch 12.0033 and Hyperchem39 softwares, respectively.

Artemisinin and its derivatives induce a rapid reduc-
tion in the number of parasites when compared with other
known drugs. They are therefore of particular interest for
severe malaria. The first reduction in the number of par-
asites is also beneficial for combination therapies. This
led to an enormous interest in the mechanism of action,
chemical143 and drug development144 of a new class of
antimalarials.
The group endoperoxide is essential for antimalarial

activity142 and is mediated by active oxygen (superoxide,
H2O2 and/or radicals hidroxis) or carbon free radicals.145

The artemisinin has a broad and extraordinary activity
against parasites in asexual form, killing at all stages in
malaria caused by Plasmodium falciparum. The artemisinin
also kills the gametocytes, including the four stages of
gametocytes, which are sensitive only to primaquine.146

In vitro biological assays indicated that some amount
of iron must be added artemisinin to show antimalarial
activity. In humans, the heme compound (Fig. 7), which
is a product originating from one digestive process the
RBCs must be the source of iron for artemisinin. In human
malaria parasites digest over 70% of the hemoglobin
within the red blood cells infected, since the globin and
heme as products, the protein is hydrolyzed, generating
aminoacids that are utilized in protein synthesis by the
parasite, since heme undergoes a polymerization process
having as a product hemozoína.147–149

The polymerization of heme is a target of some drugs
antimalarials such as chloroquine, which inhibits this pro-
cess. Strains of chloroquine-resistant Plasmodium berghei
that for want of hemozoín are caused by the non-
occurrence of polymerization of heme. This reinforces
the view that the inhibition of heme polymerization is
the mode of action of artemisinin, thus indicating that
artemisinin very possibly interacts with the free heme and
for this reason inhibits the polymerization process.149
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Fig. 7. The numbering the heme group is systematic for the purpose of determining the geometrical parameters. This structure was visualized by
means of ChemSketch 12.0033 and Hyperchem39 softwares, respectively.

The numbering of the heme is systematic for purposes
of determination of geometrical parameters: bond length,
bond angle and torsion angle between artemisinin and
derivatives (drugs) with heme (receptor).
The mechanism for antimalarial action of these com-

pounds is still without conclusion, however investiga-
tions give great significance to the endoperoxide group in
artemisinin for biological activity.
There are two possibilities for the heme iron attach in

artemisinin derivatives. Posner et al. (1995)150 have pro-
posed the attack of the iron to the compound, occurs by
the position O2 and produces radial free at position O1
with subsequent rearrangement to a free radical C4. This
radical formed was suggested to be an important substance
for biological activity. The compound formed is changed
to another compound by a reaction of beta cleavage. Sub-
sequently, the new compound is rearranged to form an
epoxide compound. Alternatively, a direct intramolecular
formation for the radical form another compound. This
compound is capable of alkylated protein specific malarial
parasite and possibly cause damage to parasites.151 More-
over, Jefford et al.152 believe that the attack of the iron
the compounds takes place at the position O1 and pro-
duces a free radical at position O2. After the C3 C4 bond
is broken to give a carbon radical C4. This radical can
also be very harmful to the parasite. In the discovery and
development of drugs, knowing the mechanism of action
may help the development of new and more effective
drugs.
In artemisinin peroxide binding in 1 and 2 oxygens

(O1 and O2) is contained pharmacophoric structure of tri-
oxane ring of artemisinin, is essential for the expression
of antimalarial activity. Peroxides are known by suffer
reductive cleavage transition metal of low valency, generat-
ing free radicals oxygens. These free radicals oxygens are
potent agents of abstraction of hydrogen, can also generate
free radicals carbon by abstracting intramolecular hydro-
gen atoms, these radicals carbons are assumed to react
with biomolecules.153

The consideration of molecular flexibility of receptor
and ligand implies in treatment hundreds of thousands of
degrees of freedom, on the part of algorithms of “Dock-
ing.” The molecular recognition is a dynamic process and
highly complex, involving a large number of intermolecu-
lar interactions between the ligand, the receptor molecule
and solvent. Due to its complexity, the problem of “dock-
ing” is generally divided into two subproblems: (i) devel-
opment of an algorithm that investigate of way effective
a complex energy hypersurface to predict the conforma-
tion and orientation of a ligand molecule relative to the
active site of the receptor; (ii) predicting the binding affin-
ity of a receptor complex–ligand, i.e., the development of a
model for assessing binding free energy (usually called in
the literature function of “scoring”), it is computationally
viable to correctly discriminate between different binding
modes of the same binder and/or to determine between two
different ligands, those with the greatest binding affinity
for a given receptor.154

The first program of “docking” using Genetic Algorithm
(GA) was implemented by Judson (1993).155 The program
“docking” GOLD uses a genetic algorithm to evolve mul-
tiple subpopulations of ligands, where migration between
populations is permitted.156 The program AutoDock has
implemented a Lamarckian Genetic Algorithm (LGA).
The LGA is a hybrid GA with local search (LS). The
programs “docking” most widely used today, and that are
generally used for comparison with new proposed methods
are: DOCK, FLEXX, AutoDock and GOLD.
Currently, there large banks of molecular structures

for public access, for example, the Protein Data Bank
(PDB), where various structures are deposited and can
be obtained, and several banks of molecular structures of
ligands, as the Maybridge and the Cambridge Structural
Database.157 In the problem of docking protein–ligand the
purpose is to find and quantify the mode of correct binding
a ligand molecule in the active site of a macromolecule
receptor such that the receptor function can be enabled or
inhibited.137
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Cheng et al. (2002)158 performed a study of molecu-
lar docking and 3D-QSAR, quantitative relationship three-
dimensional structure activity, in order to understand
the antimalarial mechanism and the relationship between
physicochemical properties and antimalarial activity of
artemisinin analogues by molecular docking simulations to
probe the interactions of these analogues with heme. The
3D-QSAR was based docking models employing compar-
ative molecular field force analysis (CoMFA) and compar-
ative molecular similarity indices analysis (COMSIA). The
subsequent analysis of partial least squares (PLS) indicated
that the required energies of the calculation correlated well
with the experimental values of the activity. The CoMFA
and COMSIA models were active conformations that have
demonstrated a good predictive ability. In turn combining
together the results of docking.
The studies on the mechanism of action artemisinin have

been conducted in search of providing guides for synthesis
of new derivatives with improved efficiency and stability in
combat malaria falciparum. In these studies the activities
of artemisinin and its derivatives appear to be mediated
by its interaction with iron in hemoglobin, see Figure 8,
through endoperoxide function.159

The endoperoxide binding (C O O C) of
artemisinin is believed to be the key to the mode of
action of the drug. The iron in the +2 oxidation state
(Fe+2� catalyzes the breaking of this bond, resulting
in highly reactive free radicals these free radicals from
artemisinin derivatives modify and inhibit a variety of
parasite molecules, causing them to die. A rich source
of intracellular Fe+2 is the heme that is an essential
component of hemoglobin, and also responsible for
activating artemisinin within the parasite.160

Malaria parasites in humans degrade hemoglobin and
red blood cell within the heme and globin. Subsequently,
globin is hydrolyzed to produce amino acids as the
source for protein synthesis. The toxic portion of heme
will be principally detoxify by the process of hemozoina
polymerization.147�148

Fig. 8. The molecular docking can be performed using the GOLD
software.156 The structure of heme to the realization of interaction
drug–receptor/artemisinin-heme (Molecular Docking) was obtained from
the Protein Data Bank (PDB).157

8. SOME EXAMPLES OF USE
QUANTUM-CHEMICAL PARAMETERS
IN STUDIES SAR/QSAR

Martins et al. related the geometric and electronic descrip-
tors derivatives rutaecarpine analogues with biological
activity against cancer of the central nervous system
(CNS), where calculations of quantum chemistry used was
the molecular level B3LYP/6-31 (d) and statistical ana-
lyzes were performed for 21 rutaecarpine derived ana-
logues. Of (86) calculated molecular descriptors, (05) were
selected for constructing the model of principal compo-
nent analysis (PCA). The component PC1, which responds
by 46.11% of the total variance, was able to completely
discriminate compounds in two classes: active and inac-
tive. All molecular descriptors selected by PCA model
were electronic parameters. The hierarchical cluster anal-
ysis (HCA) was also applied to the descriptors selected
by PCA model. Based on (05) descriptors selected were
possible to suggest new derivatives assets of the rutae-
carpine to be synthesized. Furthermore, a model of par-
tial least squares for discriminant analysis (PLS-DA) was
built supervised and successfully applied in discriminat-
ing similar to rutaercarpine, which was validated using an
independent set of compounds.48

One of the first studies of structure-activity relationship
of artemisinin and antimalarial molecules using molecular
electrostatic potential maps was performed by Thomson,
Cory and Zerner (1991), through the theoretical study
of the structure of artemisinin and its derivatives using
semi-empirical methods (AM1 and PM3) and Hartree-
Fock (3-21G, 6-31G). The MEP obtained with AM1 and
PM3, when compared showed distinct differences between
active and inactive molecules, such as 8-deoxyartemisinin
because active molecules have a wide band around the
negative potential of the molecule containing endoperox-
ide binding.161

Bernardinelli (1994) used maps of molecular electro-
static potential aiming to identify the key features that
are necessary for the antimalarial activity of artemisinin
and some derivatives. The MEP showed that the active
molecules have a region of negative potential similarly
near the trioxane ring, but this region is displaced in
inactive compounds. The MEP were used to make pre-
dictions of quality new and more effective antimalar-
ial molecules, thereby Bernardinelli et al. concluded that
any further active molecule will have MEP similar to
artemisinin.47

Pinheiro, Ferreira and Romero (2001) techniques com-
bined quantum chemical (Hartree-Fock 3-21G) and mul-
tivariate analyzes methods (PCA, HCA, KNN and
SIMCA) to study and propose diidroartemisinin deriva-
tives. Through the technique PCA and HCA selected seven
(7) descriptors that were responsible for the classification
of compounds into two distinct classes, and with construc-
tion of qualitative models KNN and SIMCA proposed two
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(2) compounds of a set of twelve (12) tested predicted as
high activity.162

Pinheiro et al. (2003) planned artemisinin derivatives
with antimalarial activity with the help of quantum chem-
istry and partial least squares method (PLS). They built a
QSAR model based on five (5) molecular descriptors used
to predict the antimalarial activity of ten (10) compounds
with unknown activity, and of these one (1) compound
was predicted to be more active than the compounds stud-
ied. Also performed constructing molecular graphics and
molecular docking studies between artemisinin and heme.
Proposed by molecular docking of artemisinin and some
derivatives with the hemoglobin A, a view of the binding
mode between artemisinin-heme.159

Ferreira et al. (2010) studied artemisinin and 18
derivatives with antimalarial activity against strains of
Plasmodium falciparum W-2, through quantum chemical
and multivariate analysis. The optimization of the geom-
etry of the structures was carried out with the theory
of Hartree-Fock (HF) and HF/3-21G∗∗ basis set. Maps
of molecular electrostatic potential (MEP) and molecular
docking were used to investigate the interaction between
the ligands and the receptor (heme). The principal com-
ponent analysis (PCA) and hierarchical cluster analysis
(HCA) were used to select the most important descriptors
related activity.163

Leite and colleagues (2010) conducted studies of 18
natural compounds brazilian flora, which have the per-
oxide group and presumably act in heme protein, lead-
ing to a reduction of binding of peroxide and producing
radicals which can kill the etiological agent of malaria
(Plasmodium falciparum strains), and may show antimalar-
ial activity. These facts motivated to study the interaction
of the 18 natural peroxides, initially performing a confor-
mational search using the MM3 method for each molecule.
The most stable conformers were optimized by PM3(tm)
method. Then there was a docking between peroxide and
of the heme group, followed again by a conformational
search. In conclusion, the results showed that four of the
compounds (10, 13, 14 and 15) may be desirable anti-
malarial activity.164

Barbosa et al. (2011) performed molecular modeling
and chemometric studies involving artemisinin and 28
derivatives with anticancer activity against human hepa-
tocellular carcinoma HepG2. The calculation of the stud-
ied compounds were performed B3LYP/6-31G∗∗ level.
The electrostatic potential maps were used in an attempt
to identify key structural features of artemisinin and its
derivatives, that are required for its activities, and to inves-
tigate its interaction with transferrin. The chemometric
method (PCA, HCA, KNN, SIMCA and SDA) were used
to reduce the dimensionality and investigate which subset
of variables could be more effective for the classification
of compounds according to their degree of anticancer
activity. Furthermore, the molecular docking was used
to investigate the interaction between the ligands and

receptor. The results showed that the approximation of the
ligands to the receptor is through endoperoxide binding.165

Recently Figueiredo et al. (2011) developed studies
antimalarial compounds with biological activity against
Plasmodium falciparum K1. These studies have led to
obtaining multivariate models for artemisinin deriva-
tives and a series of dispiro-1,2,4-trioxolanes. A pre-
dictive model was generated by PLS method, with
three latent variables explaining 99.8% of the total vari-
ance, Q2 = 0�87, R2 = 0�85, obtained for 16/4 molecules in
the training/external validation set. The descriptors selected
for the model were the binding free energy, logarithm of
octanol-water partition coefficient (logP� and molecular
volume. The application of these models has enabled the
prediction of activities compounds designed with the infor-
mation obtained from studies developed. Moreover, the
studies of new series of antimalarial compounds are found
in the study phase which also can be inferred about the
activities of new compounds to be designed.166

Carvalho et al. (2011) studied with B3LYP/6-31G∗∗ level
of theory the artemisinin and 31 analogues with anti leish-
manicidal activity against Leishmania donovani, and pro-
posed a set of 13 artemisinins, 7 less active and 6 that have
not been tested, and of these six, one was expected to be
more active against L� donovani. In this study, maps Elec-
trostatic Potential (MEP) were used in an attempt to iden-
tify key structural features of artemisinin and analogs, and
mode of interaction with its receptor (heme). The chemo-
metric methods: PCA, HCA, SDA, KNN and SIMCA were
used to reduce dimensionality and investigate which subset
of descriptors are responsible for the classification of the
activity anti leishmanicidal as larger and smaller.167

Recently Cristino e colleagues (2012) used the
B3LYP/6-31G∗ theory to model artemisinin and Nineteen
10-substitued deoxoartemisinin derivatives, with different
degrees activity against strains of Plasmodium falci-
parum D-6 of Sierra Leone. The chemometric meth-
ods (PCA), (HCA), (KNN), (SIMCA) and (SDA) were
employed to reduce the dimensionality and investigate
which subset of descriptors are responsible for classifica-
tion between more and less active deoxoartemisinin anti-
malarial. The chemometric methods: Principal Component
Analysis (PCA), Hierarchical Cluster Analysis (HCA),
K-Nearest Neighbor (KNN), Soft Independent Modeling
of Class Analogy (SIMCA) and discriminant analysis
(SDA) were used to reduce the dimensionality and inves-
tigate which subset of descriptors are responsible for clas-
sification between more and less active.168

Recent studies of 51 peroxides were made to find cor-
relations between in silico parameters and experimen-
tal data for identifying new antimalarials from natural
sources. The interaction of heme was studied by molecular
docking refinement followed by conformational analysis
using semiempirical parametric method 6 (PM6). The
results indicated that compounds 5 and 24 are promising
antimalarials.169
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Zhao (2013) conducted a study about the natures gen-
eral of Dynamic of proteins and thermodynamics which
were analyzed based in the theory irreversible for protein
folding and in the theory protein structure thermodynamic.
The main contents included:
(1) basic concepts of irreversible thermodynamics,
(2) the irreversible thermodynamic theory to the folding
of proteins that reveals the fundamental rules of movement
coupled to a protein,
(3) thermodynamic theory of the structure of protein
(4) the dynamic nature and thermodynamics of proteins
conformational change,
(5) the role of protein dynamics in enzymatic reaction,
(6) the thermodynamic relationship between the protein
and biological function.

Many problems of enzymology and protein science are
discussed. The analysis of Zhao showed that the properties
and function of the proteins could be well explained by
the application of concepts dynamics and thermodynam-
ics proteins. Dynamic of proteins and thermodynamics are
fundamental to all biological processes, among them we
can mention the molecular docking simulations of anti-
malarial compounds with heme protein.170

In recent years we can realize that studies and research
related to computational quantum chemistry and molecu-
lar modeling have been growing in an exponential manner.
Khrennikov has reported about a series of recent debates
about the bases-quantum and incompletion of quantum
mechanics and a new classical model which reproduces
the bases quantum averages and correlations, classical field
theory prequantum statistics.171

This article reinforces that theoretical studies contribute
significantly to new discoveries and research involving var-
ious areas of human knowledge, as we mention:
(1) Chang et al. (2013) has investigated theoretically the
encapsulation of amino acids of a carbon nanotube sin-
gle wall zigzag, and the results revealed the stability of
amino acids along the inner wall of the cavity. The essen-
tial structural features were observed about the modifica-
tion of the properties of encapsulated molecules as well as
the surface properties. The carbon nanotube experienced
has associated geometric distortions with corresponding
internal molecular structure.172

(2) Kala et al. (2013) computational calculations
performed using the semi-empirical method that is
computationally flexible to capture various quantitative
descriptions of molecules of moderate size, and these
were investigated the transport properties for the quan-
tum heterocyclic molecules such as pyrrole, furan and
thiophene, based on Green’s function nonequilibrium
(NEGF) formalism combined with Extended Huckel the-
ory (EHT). In these systems, molecular transport prop-
erties are strongly influenced by the geometry of the
molecule, the chain length of the molecules and their
bonding strength to the electrodes attached to the side.173

(3) Li (2013) developed a three-dimensional model to
investigate the formation of nanoparticles incorporated by
ion beam implantation. The nucleation and growth pro-
cess dynamics, including the known maturation Ostwald,
were successfully reconstructed by a theoretical model.
This theoretical model gives a remarkable insight into the
formation mechanism, and makes it possible to control and
optimize fully the nanostructure through ion implantation
technology.174

9. FINAL CONSIDERATIONS
This study aimed to demonstrate the variety of types of
molecular descriptors based on quantum-chemical calcula-
tions derived from the wave functions and charge distribu-
tion, and how these descriptors have been used to explain
the physico-chemical and/or biological activities in studies
of structure-activity relationships.
The selection of the best set of descriptors for the

activity under study can be achieved by careful selection
and combination among many descriptors. In many cases
the quantum-chemical descriptors have physical mean-
ing and are used to unravel the complex mechanisms
details involved in intra and intermolecular interaction. It
should be highlighted that the quantum-chemical descrip-
tors may be calculated from the structure of the molecules
that is, starting from a geometry optimized or determined
experimentally (for example, X-rays and nuclear magnetic
resonance). However, these descriptors are not completely
universal, because they are dependent on the structures
and systems studied. Even though it is based on a min-
imum of energy, the calculated descriptors have values
very close to their respective empirical values and indi-
cate trends electronic systems under study. Based on the
aspects highlighted in this work is evident, therefore, that
the quantum-chemical descriptors have a wide range of
applications in SAR and QSAR studies, as well as in many
areas of integration of fundamental knowledge of Organic
Chemistry, Biochemistry, Molecular Biology, Pharmacol-
ogy and Pharmaceutical Chemistry.
Thus it is justified to study and develop new deriva-

tives with more potent biological activity using quantum
chemical methods (SAR and QSAR), multivariate anal-
ysis (PCA, HCA, PLS) analysis of pattern recognition
KNN, SDA and SIMCA and Molecular Docking (interac-
tion drug-receptor), using the resulting information as a
guide to obtaining of new derivatives active most promis-
ing to be synthesized.
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