INTRODUÇÃO À TEORIA DA RELATIVIDADE RESTRITA - EN0242

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO AMAPÁ PRÓ-REITORIA DE ENSINO E GRADUAÇÃO DEPARTAMENTO DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO LICENCIATURA PLENA EM FÍSICA

1. Identificação do Componente Curricular						
Código	Componente Curricular	Carga horária semanal	Hora – aula (50min)	Hora- relógio (h.r.)	CH Teórica em h.r.	CH Prática em h.r.
	INTRODUÇÃO À TEORIA DA RELATIVIDADE RESTRITA	4	60	50	60	-
Período				OPT	FATIVA	

2. Ementa

Princípios básicos de relatividade restrita: Transformações de Lorentz, cinemática relativística. espaçotempo de Minkwoski. Dinâmica relativística da partícula. Relatividade e eletromagnetismo. Introdução à relatividade geral.

relatividade geral.					
3. Bases Científi	ca e Tecnológica				
Unidades e Discriminação dos Temas					
	Princípios básicos de relatividade restrita				
	Princípio de relatividade de Galileu. Relatividade Newtoniana. Eletrodinâmica de				
UNIDADE I	Maxwell. Experimentos de Fizeau, Michelson e Morley. Postulados de Einstein.				
UNIDADE I	Simultaneidade/Causalidade. Transformações de Lorentz e suas consequências:				
	contração de comprimento, dilatação de tempos, efeito Doppler. Transformação de				
	Lorentz de velocidades e acelerações.				
	Dinâmica relativística da partícula				
UNIDADE II	Momento relativístico; Força relativística; Relação Energia/Massa; Transformação de				
	Lorentz do momentum e energia; Reações nucleares.				
UNIDADE III	Espaço-tempo de Minkowski				
UNIDADE III	Vetores; Eventos/intervalos; Cone de Luz; Quadrivetores; Diagramas Espaço-tempo.				
	Relatividade e eletromagnetismo				
UNIDADE IV	Conservação de carga; Densidade de corrente; Equações de Maxwell covariantes; TL				
	dos campos E e B ; Potenciais.				
	Introdução à relatividade geral				
UNIDADE V	Princípio de Equivalência; Trajetória da Luz; Dilatação do tempo; Curvatura do espaço-				
	tempo; Consequências observáveis.				

4. Bibliografia

Bibliografia Básica

- 1. COSTA, Manoel Amoroso. Introdução à teoria da relatividade. Rio de Janeiro: Ed. UFRJ, 1995.
- 2. D'INVERNO, Ray A. Introducing Einstein's relativity. Oxford: Clarendon Press, 1992.
- 3. TIPLER, Paul A.; LLEWELLYN, Ralph A. Física moderna. 3. ed. Traduzido para o português. Rio de Janeiro: LTC.

Bibliografia Complementar

- 1. GAZZINELLI, Ramayana. Teoria da relatividade especial. São Paulo: Editora Blucher, 2019.
- 2. GRIFFITHS, David J. Eletrodinâmica. 3. ed. São Paulo: Pearson, 2011.

Pré-requisito: Mecânica Clássica I; Eletromagnetismo Clássico I