
COMPUTING PRACTICES 

The problems of designing large software systems were studied through 
interviewing personnel from 17 large projects. A layered behavioral model is 
used to analyze how three of these problems--the thin spread of application 
domain knowledge, fluctuating and conflicting requirements, and 
communication bottlenecks and breakdowns--affected software productivity 
and quality through their impact on cognitive, social, and organizational 
processes. 

A FIELD STUDY OF THE SOFTWARE DESIGN 
PROCESS FOR LARGE SYSTEMS 
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THE NEED FOR ECOLOGICAL DATA IN 
TECHNOLOGY RESEARCH 
MCC, The Microelectronics and Computer Technology 
Corporation, is a research consortium whose Software 
Technology Program was tasked by its member compa- 
nies to create technology that dramatically improves 
software productivity and quality. This program has 
focused its research on the upstream portion of the 
software development process, since the empirical liter- 
ature suggests that requirements and design decisions 
exert tremendous impact on software productivity, 
quality, and costs throughout the life cycle [35]. From 
the beginning, the program was committed to problem- 
driven, rather than technology-driven, research [46]. To 
pursue problem-driven research, an empirical studies 
group was established to assess the upstream factors in 
our member companies' development environments 
that reduced software productivity and quality. 

Some members of our team have been proponents of 
quantitative and experimental methods in software 
engineering research [18, 20-22]. We judged these 
methods insufficient, however, for providing insight 
into our member companies' problems early enough to 
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support a large, focused technology research program. 
Accordingly, we employed field research methods char- 
acteristic of sociology and anthropology [12]. The need 
for expedient results dictated the short, intensive study 
of a broad cross-section of projects, rather than the lon- 
gitudinal study of a single project. In a similar field 
study, Zelkowitz, Yeh, Hamlet, Gannon, and Basili [63] 
identified discrepancies between the state of the art 
and the state of practice in using software engineer- 
ing tools and methods. The data we collected lend 
themselves to creating the case studies often recom- 
mended for use in research on software development 
projects [8, 54]. 

This field study of the software design process con- 
sisted of interviews with personnel on large system de- 
velopment projects. The interviews revealed each proj- 
ect's design activities from the perspectives of those 
whose actions constituted the process. Our inter- 
views provided detailed descriptions of development 
problems to help identify high-leverage factors for 
improving such processes as problem formulation, 
requirements definition and analysis, and software 
architectural design. We focused on how requirements 
and design decisions were made, represented, commu- 
nicated, and changed, as well as how these decisions 
impacted subsequent development processes. 
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A LAYERED BEHAVIORAL MODEL OF 
SOFTWARE DEVELOPMENT PROCESSES 
Studies by Walston and Felix [58], Boehm [9, 10], 
McGarry [43], and Vosburgh, Curtis, Wolverton, Albert, 
Malec, Hoben, and Liu [57] have demonstrated the sub- 
stantial impact of behavioral (i.e, human and organi- 
zational) factors on software productivity. The effects of 
tools and methods were relatively small in these stud- 
ies. For instance, rather than the sizable gains often 
promised, Card, McGarry, and Page [16] found that ap- 
plying a collection of software engineering technologies 
to actual projects had only a 30 percent impact on relia- 
bility and none on productivity. To create software 
development technology that dramatically improves 
project outcomes, Weinberg [61], Scacchi [51], and 
DeMarco and Lister [24] argue that we must under- 
stand how human and organizational factors affect the 
execution of software development tasks. Nevertheless, 
Weinberg warned that "the idea of the programmer as a 
human being is not going to appeal to certain types of 
people" [61 p. 279]. 

For instance, software design is often described as a 
problem-solving activity. Nevertheless, few software de- 
velopment models include process components identi- 
fied in empirical research on design problem-solving 
[2, 31, 32, 34, 36, 42]. Even worse, software tools and 
practices conceived to aid individual activities often 
do not provide benefits that scale up on large projects 
to overcome the impact of team and organizational 
factors that affect the design process. 

Our study differs from the quantitative studies we 
cited earlier by describing the processes and mecha- 
nisms through which productivity and quality factors 
operate, rather than developing a quantitative assess- 
ment of their impact. These descriptions support our 
need to understand how different tools, methods, prac- 
tices, and other factors actually affect the processes that 
control software productivity and quality. Since large 
software systems are still generated by humans rather 
than machines, their creation must be analyzed as a 
behavioral process. In fact, software development should 
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FIGURE 1. The layered behavioral model of software 
development, 

be studied at several behavioral leveis [40], as indicated 
in the layered behavioral model presented in Figure 1. 
This model emphasizes factors that affect psychological, 
social, and organizational processes, in order to clarify 
how they subsequently affect productivity and quality. 

The layered behavioral model focuses on the behav- 
ior of those creating the artifact, rather than on the 
evolutionary behavior of the artifact through its devel- 
opmental stages. At the individual level, software de- 
velopment is analyzed as an intellectual task subject to 
the effects of cognitive and motivational processes. 
When the development task exceeds the capacity of a 
single software engineer, a team is convened and social 
processes interact with cognitive and motivational 
processes in performing technical work. In larger proj- 
ects, several teams must integrate their work on differ- 
ent parts of the system, and interteam group dynamics 
are added on top of intrateam group dynamics. Projects 
must be aligned with company goals and are affected 
by corporate politics, culture, and procedures. Thus, a 
project's behavior must be interpreted within the con- 
text of its corporate environment. Interaction with 
other corporations either as co-contractors or as cus- 
tomers introduces external influences from the busi- 
ness milieu. These cumulative effects can be repre- 
sented in the layered behavioral model. The size and 
structure of the project determines how much influ- 
ence each layer has on the development process. 

The layered behavioral model is an abstraction for 
organizing the behavioral analysis of large software 
projects. It encourages thinking about a software proj- 
ect as a system with multiple levels of analysis. This 
model does not replace traditional process models of 
software development, but rather organizes supplemen- 
tary process analyses. This model is orthogonal to tradi- 
tional process models by presenting a cross-section of 
the behavior on a project during any selected develop- 
ment phase. Describing how software development 
problems affect processes at different behavioral levels 
indicates how these problems ripple through a project 
[51]. The layered behavioral model encourages 
researchers to extend their evaluation of software 
engineering practices from individuals to teams and 
projects, to determine if the aggregate individual 
level impacts scale-up to an impact on programming- 
in-the-large. 

SAMPLE AND ANALYSIS 
Sample and Study Procedures 
Candidate projects were identified by each company's 
liaison to the MCC Software Technology Program in 
conjunction with company management. These indus- 
tries were in businesses such as computer manufactur- 
ing, telecommunications, consumer electronics, and 
aerospace. Originally, we wanted to study projects that: 

* involved at least 10 people 
• were past the design phase but not yet delivered 
• involved real-time, distributed, or embedded 

applications 
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Most projects selected conformed to some, but not all, 
of these criteria, and the deviations provided a richer 
set of project types to study. Rather than provide only 
successful projects, companies were willing to let us 
interview a project that had been terminated and sev- 
eral others that had been resurrected from failures. 
Nevertheless, we make no claim that this is a random 
sample. 

From May through August, 1986, we visited 19 proj- 
ects from nine companies. Two projects were actually 
programming teams embedded in larger projects and 
were dropped from this analysis. Prior to each site visit 
the project manager had completed a brief form de- 
scribing project characteristics, and these are summa- 
rized in Table I. These projects varied in the: 

Although all interviews were recorded, we offered to 
turn off the tape recorder any time the participant 
wished. One participant requested that the interview 
not be recorded, and several others requested that the 
recorder be turned off briefly while describing supervi- 
sors. Several participants, most often senior system en- 
gineers, requested that their tapes be played for senior 
management. Tape recordings of the 97 interviews 
yielded more than 3,000 pages of transcripts. 

Analysis of the Interviews 
Analysis of the interview transcripts revealed the pro- 
cesses that underlie a number of classic software devel- 
opment problems. We took a two-pronged approach in 
our analysis. In a top-down approach, we built models 

1 Terminated - -  
2 Development 24 P" 
3 Development 50 
4 Development 50 v- 
5 Design 70 
6 Development 130 
7 Development 150+ 
8 Maintenance 194 
9 Development 200 

10 Maintenance 250 
11 Development 350+ 
12 Maintenance 400 
13 Design 500 
14 Maintenance 725 
15 Development 1000 v ~ 
16 Maintenance 50K+ v" 
17 Requirements 100K v- 

TABLE I. Charactedstics of the 17 Field Study Projects 

Application 

Suppor t  Sof tware 
, t  Radio Control 

v,  ~ Process Control 
Operating System 

P" CAD 
CAD 

v" ~ Avionics 
C 3 

Compiler 
Run-time Library 

Compiler 
Transaction Proc. 

v- Telephony 
Operating System 

v" Telephony 
v" ~ ~ Radar, C 3 

v" ~ C 3, Life Suppor t  

• stage of development (early requirements definition 
through maintenance) 

• size of the delivered system (24K to an estimated 
100M lines of code) 

• application domain (operating systems; transaction 
processing; communications, command, and control 
[C3]; avionics) 

• key project/system attributes (e.g., real-time, distrib- 
uted, embedded, and defense) 

We conducted structured interviews approximately 
one hour long on site with systems engineers, senior 
software designers, and the project manager. On about 
one-third of the projects, we were able to interview the 
division general manager, customer representatives, 
and the testing or quality assurance team leader. Parti- 
cipants were guaranteed anonymity, and the informa- 
tion reported has been sanitized so that no individual 
person, project, or company can be identified. The 
methods we used in creating questions and conducting 
these interviews with participants are described in 
Appendix A, along with a discussion of salient meth- 
odological issues regarding interview data. 

of the important processes described in the interviews. 
In a bottom-up approach, using projects that presented 
particularly crisp case studies, we wrote summaries of 
process-related issues from individual interviews and 
then synthesized summaries for the project. We clus- 
tered the problems into several areas we heard repeat- 
edly across different projects. The three most salient 
problems, in terms of the additional effort or mistakes 
attributed to them, were: 

(1) the thin spread of application domain knowledge 
(2) fluctuating and conflicting requirements 
(3) communication and coordination breakdowns 

We distinguished among these three problems be- 
cause they operate through different mechanisms and 
may require different solutions. Each problem typically 
emerged from processes at one level of the layered be- 
havioral model, but affected processes at several levels. 
For instance, the thin spread of application knowledge 
was a cognitive issue, while fluctuating requirements 
normally resulted from conditions in the business 
milieu. Communication breakdowns, however, could 
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occur at any process level. The effects of these prob- 
lems were not independent. For instance, fluctuating 
requirements increased a development team's 
need for communication both with customers and 
with the project's other teams. 

A section on each problem will begin with discussion 
at the behavioral level whose processes formed the 
problem's primary mechanism. We will then describe 
how it rippled through a software project by affecting 
processes at other levels. We will illustrate these de- 
scriptions with sanitized quotes from the field study 
transcripts. 

THE THIN SPREAD OF APPLICATION DOMAIN 
KNOWLEDGE 
The deep application-specific knowledge required to 
successfully build most large, complex systems was 
thinly spread through many software development 
staffs. Although individual staff members understood 
different components of the application, the deep 
integration of various knowledge domains required to 
integrate the design of a large, complex system was a 
scarcer attribute. This problem was especially charac- 
teristic of projects where software was embedded in a 
larger system (e.g., avionics or telephony), or where the 
software implemented a specific application function 
(e.g., transaction processing}. These systems contrast 
with applications currently taught in computer science 
departments, like single processor operating systems 
and compilers. Although most software developers 
were knowledgeable in the computational structures 
and techniques of computer science, many began their 
career as novices in the application domains that con- 
stituted their company's business. As a result, software 
development required a substantial time commitment 
to learning the application domain. 

System engineer: Writing code isn't the problem, 
understanding the problem is the problem. 

Many forms of information had to be integrated to 
understand an application domain. For instance, project 
members had to learn how the system would behave 
under extreme conditions such as a jet fighter entering 
battle at night during bad weather, a telephone switch 
undergoing peak load on Mother's Day, or an automated 
factory with machines running at different speeds. Soft- 
ware developers had to learn and integrate knowledge 
about diverse areas such as the capabilities of the total 
system, the architecture of a special-purpose embedded 
computer (often a microprocessor), application-specific 
algorithms, the structure of the data to be processed 
and how it reflected the structure of objects and pro- 
cesses in the application domain, and occasionally even 
more esoteric knowledge about how different users per- 
formed specific tasks. 

Individual Level 
Project managers and division vice presidents consis- 
tently commented on how differences in individual 
talents and skills affected project performance. These 

observations were consistent with earlier differences 
observed in software productivity studies [9, 19, 43]. 
Individual performance is a combination of motivation, 
aptitude, and experience; where experience often con- 
sists of disorganized education acquired on-the-job. 

Some performance differences were determined by 
how deeply programmers understood the application 
for which they were writing programs. Specification 
mistakes often occurred when designers did not have 
sufficient application knowledge to interpret the cus- 
tomer's intentions from the requirements statement. 
Customer representatives and system engineers com- 
plained that implementations had to be changed 
because development teams had misconceptions of the 
application domain. 

Customer representative: They didn't have 
enough people who understood warfare to assess 
what a war actually meant. When we say we're 
going to use this system t o . . .  search areas . . . .  
[they] thought you do it with a fixed geometric 
method. Whereas I had to explain you don't . . . .  it's 
always relative to the kind of force you are protect- 
ing. Suddenly, that becomes a whole different 
problem. 

Many projects had one or two people, usually senior 
system engineers, who assumed prime responsibility for 
designing the system. On about one-third of the proj- 
ects we studied, one of these individuals had remark- 
able control over project direction and outcome, and in 
some cases was described by others as the person who 
"saved" the system. Since their superior application do- 
main knowledge contrasted with that of their develop- 
ment colleagues, truly exceptional designers stood out in 
this study, as they have elsewhere [15, 17], as a scarce 
project resource. Thus, the unevenness  with which 
application-specific knowledge was spread across pro- 
ject personnel was a major contributor to the phenom- 
ena of project gurus. Although our primary orientation 
in the field study had been to study organizational 
processes, we could not escape the impact of these dif- 
ferences in individual design talent. 

Exceptional designers performed broader roles than 
design [44], and were recognized as the intellectual 
core of the project (i.e., the keeper of the project vision) 
by other project members. As part of this central role, 
exceptional designers provided us with the richest in- 
sight into the design process. Their understanding of 
both customers and developers allowed them to inte- 
grate different, sometimes competing, perspectives on 
the development process. 

System engineer: The people that seem to be 
really gifted at this sometimes seem to have . . ,  an 
understanding of the market voice--even though 
they're not always in touch with the customer-- 
and can understand what makes sense . . . .  Lots of 
what we work with is a hundred million ordinary 
people out there. I sort of relate to them and how 
they'll react. 
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Three characteristics appeared to set exceptional de- 
signers apart from their colleagues. First, exceptional 
designers were extremely familiar with the application 
domain. Their crucial contribution was their ability to 
map between the behavior required of the application 
system and the computational structures that imple- 
mented this behavior, shown in Figure 2. In particular, 
they envisioned how the design would generate the 
system behavior customers expected, even under ex- 
ceptional circumstances. Yet exceptional designers 
often admitted that they were not good programmers, 
indicating they did not write optimized code, if they 
wrote code at all. 

Mapping 

Application Computational 
knowledge knowledge 

FIGURE 2. The expertise of exceptional designers. 

Exceptional designers were often described as inter- 
disciplinary, since they integrated several knowledge 
domains that constituted the application domain. The 
volume of application domain knowledge and lack of 
good domain models are serious obstacles in current 
automatic programming systems [6]. For large em- 
bedded systems these problems are complicated by the 
number of domains that must be integrated. For in- 
stance, designing military avionics software might re- 
quire expertise in flight control, navigation, sensor-data 
processing, electronic countermeasures, and target 
acquisition. 

System engineer: It is one of the underlying main 
problems . . . .  not having enough of the system- 
level thinkers . . ,  to coordinate the thinking of the 
people who don't think on a system level . . . .  There 
aren't enough system-level thinkers to go around, 
even to do the quotes . . . .  It's what people are pay- 
ing attention to, what are their hot-buttons. You 
get the bit bangers who are only interested about 
bits . . . .  [Systems thinkers] are not looking at the 
computer as the end-all and be-all of the problem. 
It's just one more of the objects that they have to 
deal with. 

Although a project might have experts in each of its 
functional domains, these experts were often unable to 
model the effect of component integration on process- 
ing or storage constraints. Exceptional designers were 
skilled at modeling the interaction of a system's differ- 
ent functional components, and occasionally developed 
notations for representing them. Exceptional designers 
were also adept at identifying unstated requirements, 
constraints, or exception conditions. 

System engineer: One of the things I do best is 
model the real world within our database . . . .  and 
we always have the same problem, "This is what 
you want to model? Well, you've got this little 
hickey they didn't tell you about.". . .  Most people 
cannot model . . . .  it just requires an ability to 
abstract. 

Second, exceptional designers were skilled at com- 
municating their technical vision to other project mem- 
bers. They usually possessed exceptional communica- 
tion skills [30] and often spent much of their time 
educating others about the application domain and its 
mapping into computational structures. In fact, much of 
their design work was accomplished while interacting 
with others. Weinberg suggests that the integrative role 
of an exceptional designer compounds itself. This hap- 
pens because those perceived as most knowledgeable 
will become communication focal points, providing 
them more knowledge about the system to integrate 
into a more comprehensive model. 

Third, exceptional designers usually became con- 
sumed with the performance of their projects. They 
were a primary source of coordination among project 
members and assumed, without formal recognition, 
many management responsibilities for ensuring techni- 
cal progress. They frequently internalized the pressures 
of the project because of their identification with its 
success. Although not part of our original focus, we 
became sensitive to the health risks of stress on crucial 
project personnel and the business risks that can result. 

Conventional wisdom on software development often 
argues that no software project should rely on the per- 
formance of a few individuals. The experience of many 
successful large projects, however, indicates why this 
reliance is more troublesome in theory than in practice. 
An exceptional designer represents a crucial depth and 
integration of knowledge domains that are arduous to 
attain through a group design process. Under severe 
schedule constraints, groups may be unable to achieve 
the level of knowledge integration required to develop 
a cohesive architecture and design strategy [14]. 

Broad application knowledge was acquired more 
through relevant experience than through training, 
since little training was provided for integrating techni- 
cal domains. Developing design skill required the right 
project assignments, since some large system develop- 
ment lessons could not be acquired through classroom 
instruction or on small projects. Thus, the substantial 
cost of developing talented large system designers is 
part of the cost of developing large systems. 

System engineer: Someone had to spend a 
hundred million to put that knowledge in my head. 
It didn't come flee. 

Team Level 
Although the thin spread of application domain knowl- 
edge is a cognitive issue, it had impact on processes, 
such as decision-making, occurring at the team level 

1272 Communications of the ACM November 1988 Volume 31 Number 11 



Computing Practices 

and above. Owing to the broad skill ranges on design 
teams, expert power [28], meaning the ability to influ- 
ence a group through superior knowledge, appeared 
to be the most effective means of exercising author- 
ity during many parts of the design process. Group 
decision-making researchers have generally not studied 
teams on long duration activities like system design, 
where the quality of the result is difficult to measure 
[26, 33]. Therefore, theoretical models of group 
decision-making may not describe the behavior of 
large system design teams. 

If we were to construct a simple participative, 
consensus-oriented model of the team design process, 
we might begin with team members holding their own, 
often partial, models of the system's structure. These 
individual models usually differ in their representation 
of factors such as the application system's external be- 
havior, the environmental context in which it will op- 
erate, or the most appropriate computational model. In 
the second stage, individuals sharing similar models 
would form coali t ions to argue for their architectural 
position. In the final stage, the technical differences 
between coalitions would be resolved into a team con- 

sensus .  Belady [7] observed similar processes within 
Japanese design teams. 

Stage 3: 
TEAM 
CONSENSU: 

Stage 2: 
COALITION 
FORMATIOI~ 

Stage 1: 
INDIVIDUAL 
MODELS 

FIGURE 3. Small coalitions often coopt the design process. 

In contrast to the model just outlined, the early 
phases of most projects in our study were dominated by 
a small coalition of individuals, occasionally even a sin- 
gle individual (the exceptional designer) who took con- 
trol of the project's direction. Members of the dominant 
coalition usually knew most about the application, or 
had previous experience that made them quick studies. 
When all team members were from the same corporate 
division, competing coalitions were reported much less 
often than we had expected. As Figure 3 shows, com- 
peting coalitions were difficult to form because a domi- 
nant coalition's speed in formulating a design made 
catch-up by late-forming coalitions difficult. Further, 
alternatives were usually debated in terms of the archi- 
tectural foundation already proposed. 

System engineer: I tried an experiment last 
summer and said, "What would happen if I just 
sort of was agreeable to a certain extent with [a 
colleague]." Ever noticed in a meeting where 

there's 15 people and there's 15 points of view, a 
majority is only two. Two people say the same 
thing and everything moves forward . . . .  I think we 
pulled off an incredible project in a very short time 
by that relationship. He lets me win sometimes and 
I let him win sometimes, and the game goes on. 

Competing coalitions occurred m o r e  often on teams 
formed with representatives from several different com- 
panies. For single company projects, competing coali- 
tions formed primarily when the design team consisted 
of members from different organizational divisions. 
Coalitions based on organizational allegiances often 
resulted from differences in each organization's model 
of the application (discussed under Business Milieu). 

These observations do not imply that teams are un- 
important during design. Videotaped observations of a 
design team in our laboratory [59] suggested that teams 
composed of members from different technical areas 
were better at exploring design decisions in breadth, 
rather than depth, by posing alternatives and con- 
straints and by challenging assumptions. Thus, design 
directions set by a small coalition may benefit when 
challenged by colleagues who may never gather enough 
support to form a coalition. Forming a competing coali- 
tion requires considerable effort to generate support for 
an alternate proposal among colleagues. Rather than 
being only a matter of technical argumentation, form- 
ing an alternate coalition requires a social process of 
mobilizing support. 

Project Level 
When application knowledge was thinly spread, it was 
necessary to ensure that the design and development 
teams shared a model of the system's operation. A sys- 
tem model is actually an integrated collection of 
models. One potential set of relationships among com- 
ponents of a system model for a hypothetical project is 
illustrated in Figure 4. The relevant components and 
their r e l a t i o n s h i p s  may vary by system. Most project 
personnel were knowledgeable in one or two of the 
areas represented by circles in the diagram. Those who 
focused on the system architecture, however, were best 
positioned to integrate application and computational 

FIGURE 4. Knowledge domains involved in system building. 
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knowledge, and to oversee the functional integration of 
the design. System engineers used many methods to 
integrate a project, ranging from gentle persuasion to 
aggressive steamrolling. 

System engineer: We create a project manage- 
ment group with about five or six people that can 
do anything. When somebody's not doing some- 
thing, we roll in there and start doing it and get it 
structured just the way we want it. Then they get 
mad and say, "It's our job," but by then it's all 
structured and we back out and throw our re- 
sources somewhere else, and get something else 
going just the way we want it. 

The time devoted to learning and coordinating 
application-specific information was initially buried 
within the design phase and could not be accounted for 
separately. Learning costs were paid for in several 
ways: in planned training, in exposure to customers, in 
prototypes and simulations, in defects, in budget or 
schedule overruns, and in canceled projects. Customers 
were usually unwilling to pay for training since they 
believed the contractor should already have the re- 
quired knowledge. Thus, the time required for design 
was often seriously underestimated, since these esti- 
mates were usually based only on the time actually 
spent designing. The time spent educating project per- 
sonnel about the application domain and coordinating 
their understanding of the system was overlooked. 

We were tempted to conclude that the best prototype 
was a failed effort. We interviewed several highly pro- 
ductive projects that had emerged from the ashes of 
failed architectures, and heard several citations of 
Brooks' [14] admonition to "plan to throw one away." 
These phoenix projects occurred when exceptional de- 
signers had immersed themselves in enough of the 
application and computational problems of their archi- 
tecture to recast their vision of the system. A rapidly 
developed prototype that missed the problems uncov- 
ered in an unsuccessful architecture would not have 
provided the required insight. To be effective, proto- 
types must be sufficiently comprehensive for misunder- 
stood requirements or subtle system problems to pre- 
sent themselves. 

Company Level 
The cost of learning an application area was a signifi- 
cant corporate expense. The time estimated for a new 
project assignee to become productive ranged from six 
months to a year. Major changes in the business appli- 
cation or in the underlying technology required addi- 
tional learning. As the technical staff's application 
knowledge matured, however, the organization usually 
increased its ability to reduce project cost and sched- 
ule, and increase productivity and quality. 

System engineer: If you look at the evolution of 
this place. . ,  over the course of three or four 
years--at the beginning the most important thing 

you could b e . . .  as an engineer was somebody 
who knew the operating system internals. We're 
now making the transition to the most important 
th ing. . ,  is understanding the application. That's 
really where our bread and butter is. For a long 
time we could never keep engineers focused on 
what they were supposed to be doing here. 

Companies were affected by the migration of techni- 
cal talent into management and by whether manage- 
ment decisions were based on current knowledge of 
technical issues. If a business' software applications and 
related technology were stable, a manager's previous 
technical experience provided an adequate basis for de- 
cisions. However, major changes eroded the value of a 
manager's technical knowledge for making decisions, 
especially those that involved technical tradeoffs. Some 
managers were frequently unable to participate in the 
technical meetings (e.g., requirements analysis, design 
reviews) that provided training for their project team. 
The contribution of previous technical knowledge grew 
more remote as managers were promoted beyond first 
line management. 

Although most managers had developed progress 
tracking schemes, many were less aware of system sta- 
tus than were their system engineers. On extremely 
large projects, middle managers expressed frustration at 
being removed both from the technical decisions made 
by engineers and from the strategic decisions made by 
executives. Some software managers had difficulty ar- 
ticulating their role in the project and had no company 
source for advice or training on better development 
tools and practices. 

Programmer: The way the managers are getting 
trained is that the engineers are coming back [from 
software engineering courses] and are fighting to 
keep using some of the tools and techniques 
they've learned; and fighting against the managers 
to let them use them; and that's really how the 
managers are getting their experience. 

A major challenge to most managers was to assess 
the limits of their staff's capability and its impact on 
producing a successful system. An implicit component 
of their job was to close the gap between the technical 
challenges of the system and their staff's capability for 
solving them. They also had to assess the claims made 
by staff members about their own abilities and about 
how long it would take them to perform a task. 

Business Milieu 
When several companies cooperated in building a 
system, the separation imposed by organizational 
boundaries hindered their shared understanding of the 
application and the system architecture. Competing co- 
alitions in multicompany design teams formed along 
company boundaries and clashed over assumptions 
about market applications or system functionality that 
were unique to their business or product lines. These 
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differences frequently caused co-contractors to try to 
push the hard problems into each other 's  component as 
they negotiated the requirements  and specifications. 

System engineer: You . . .  minimized your own 
problems and maximized theirs. What  it boiled 
down to w a s . . ,  a big finger pointing contest. 

The coordination process was more complicated on 
mult icompany projects than on single company proj- 
ects, because each company understood the application 
domain in the context of its own product lines. Soft- 
ware contractors often took responsibili ty for coordinat- 
ing design decisions because they had to architect the 
system's behavior. Technical  coordination required a 
long dialectic among co-contractors both for surfacing 
assumptions and for resolving misunderstandings. 

System engineer: We had three different simula- 
tors all coming up with different answers . . . .  None 
of them reflected the same reali ty because they 
were all using their  own preconceived notions . . . .  
The human  factor definitely played a role . . . .  We 
spent many a day in trying to figure out what  the 
assumptions were of the three different simula- 
tions, saying, "No, you can' t  do it that way, go back 
and do it this way." 

Customers often believed that the software contrac- 
tor should be the prime contractor for a system since 
the software team had the greatest need to understand 
the details of the customer 's  application environment.  
Yet the software contract might involve as little as one- 
tenth of the total project cost, since the largest cost 
involved building mult iple versions of the hardware.  
Software contractors were unwill ing to assume the fi- 
nancial risk of the total project when they received 
such a small percent  of the contract 's  value. Forcing the 
customer and the software designer to communicate  
through the hardware contractor l imited the software 
team's abili ty to learn about the application domain. 
It also hindered the customer 's  abili ty to negotiate 
small, but  necessary, corrections to the software 
requirements.  

Application Domain Knowledge Summary 
Our interviews revealed that the thin spread of applica- 
tion knowledge among the project staff was a signifi- 
cant problem on many software development  projects. 
This problem init ially manifested itself at the individ- 
ual level and under lay the phenomenon of the project 
guru, an exceptional designer who could map deep ap- 
plication knowledge into a computational  architecture. 
Those with this skill exerted extraordinary influence 
over the direction of the design team, and the forma- 
tion of effective coalitions supporting alternate propos- 
als happened less often than expected. Substantial 
design effort was spent coordinating a common under- 
standing among the staff of both the application do- 
main and of how the system should perform within it. 

Periodic changes in the application domain or in the 
supporting technology reduced a company's  technical  
matur i ty  and weakened  its foundation for sound man- 
agement decisions. Mult icompany development  efforts 
had to overcome company-specific models of the appli- 
cation domain and their  translation into system func- 
tionality. Aggregating these issues across behavioral  
levels points to the importance of managing learning, 
especially of the application domain, as a major factor 
in productivity,  quality, and costs. 

FLUCTUATING AND CONFLICTING 
REQUIREMENTS 
Fluctuation or conflict among system requirements 
caused problems on every large project we interviewed. 
For example,  we visited one gargantuan system that 
was being acquired in separate components, each in- 
volving competit ive bidding among corporations. On 
the day we interviewed the proposal team, the cus- 
tomer announced a real ignment of functional compo- 
nents across different bidding competitions. We found 
team members gathered around a newspaper clipping 
and other, more official postings on the bulletin board, 
in an at tempt to determine which of their  designed 
artifacts could still be included in their  proposal. On 
another project, we were told that hardware changes 
could cause a redesign of the software every six 
months. 

Market Impacts 

Customers 
Customized needs 
Changing needs 

Add-ons 

Technology 
Technology advances 
CompetEtor's products 

Regulation 
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Approvals ] [ Technology 

Marketing S Legal I I R & D result, 
Financial I i Other product lines 
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FIGURE 5. Sources of fluctuating and conflicting requirements. 

Requirements will appear to fluctuate when the de- 
velopment team lacks application knowledge and per- 
forms an incomplete analysis of the requirements.  Now 
we will concentrate on sources of fluctuation and con- 
flict that were external  to the design team. A variety of 
events caused volatili ty and conflict in product require- 
ments, as shown in Figure 5, including such market  
factors as technological advances, competit ive products, 
regulatory constraints, standards committees, and such 
internal company factors as corporate politics, market- 
ing plans, research results, and financial conditions. 
Less visible within the project were the hidden effects 
on the requirements  such as skunkworks (work hidden 
by managers) and creeping elegance. Since the primary 
sources of fluctuating and conflicting requirements 
existed in the company and the business milieu, we 
begin our discussion at these levels. 
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Business Milieu 
Product requirements  fluctuated most frequently when 
different customers had separate needs or when the 
needs of a single customer changed over time. Analyz- 
ing requirements  for commercial  products was difficulL 
without  an explicit  s tatement of at least one customer':~ 
needs. The requirements  were often defined for the 
first customer to place an order, even though project 
personnel knew that other customers would state dif- 
ferent requirements.  During development,  designers 
tried to raise the product specification from the specific 
(driven by a single customer} to the general (driven by a 
market  of customers), although it often continued to 
evolve from the specific to the specific. 

Software architect: The whole software architec- 
ture, to begin with, was designed around one cus- 
tomer that was going to buy a couple of thousand 
of these. And it wasn ' t  really designed around 
t h e . . ,  marketplace at a l l . . A n o t h e r . . ,  customer 
had another  need, so we're, trying to rearrange the 
software to take care of these two customers. And 
when the third one comes along, we do the same 
thing. And when the fourth one comes along, we 
do the same thing. 

Even when a customized system was developed for 
one client, the requirements  often provided a moving 
target for designers. During system development,  the 
customer, as well as the developer,  learned about the 
application domain. The dialectic through which the 
developer generated the requirements  revealed new 
possibilities to the customer [29]. As customers learned 
more about the system's capabili ty and understood 
their  application better, they envisioned many features 
they wished they had included in the requirements.  

Project manager: Planned is probably a generous 
term . . . .  an englightenment occurs as they move 
forward. 

Many customers misunderstood the tradeoffs be- 
tween requested functions, the capabilit ies of existing 
technology, the del ivery schedule, and the cost. They 
learned of these tradeoffs through an i terative negotia- 
tion with the system design team, as the requirements  
were translated into a design and costs could be esti- 
mated. Each cycle is dr iven by trying to balance and 
integrate technical  and non-technical  constraints into 
the product  requirements.  

System engineer: The original proposal was re- 
jected because it was not as all-encompassing as 
they had originally perceived [the] system ought to 
be. So we made it bigger. Then it was too costly. So 
we scaled it down. It went  through over 20 ver- 
sions. It keeps expanding and contracting until  it 
cools. It's like the earth. 

Customers rarely understood the complexity of the 
development  process and often requested frequent 

changes to the requirements.  They underes t imated the 
effort required to re-engineer the software, especially 
when the system involved tight t iming or storage con- 
straints. They rarely understood the impacts that rip- 
pled through the software when changes were made 
and the coordination required to document  and test 
these changes. As a result, customers could not under-  
stand why changes to the requirements  were so costly. 

When customers had access to the development  
team, they often requested additions to the require- 
ments without  going through a formal change review 
process. Thus, the requirements  were often unstable in 
ways that were not visible to project management.  

Customer representative: We like to be in among 
the contractors, assisting where  we can, getting 
early decisions where  necessary, and at the same 
time trying to talk them into enhancements  we 
didn ' t  pay for. 

Government  customers used the requirements  state- 
ment  as the basis for obtaining competit ive bids. They 
tried to ensure that all competitors received identical  
information, regardless of whether  it was in the re- 
quirements  statement or in answers to questions. Mak- 
ing the competi t ion fair to all bidders often clashed 
with the need to clarify ambiguities or omissions, and 
answers to questions might be oblique. As a result, bid- 
ders were forced to make assumptions about require- 
ments that might later have to be changed. 

Requirements also f luctuated when approvals had to 
be obtained from a government regulatory agency. An 
agency could create design constraints in the form of 
new requirements  that differed from, and occasionally 
contradicted, those received from customers. The re- 
quirements could also change, based on regulatory 
evaluations of a completed design. 

Vice president: There were changes being driven 
by [a government  agency's] considerations . . . .  We 
were so used to working hard on a technical  deci- 
sion . . . .  and here you had all of a sudden [a gov- 
ernment  agency] being your sounding board and 
you couldn ' t  go anywhere  until  you heard from 
[a high-ranking government official]. 

Company Level 
On projects producing commercial  products, internal 
company groups, such as the market ing department,  
often acted as a customer. They could add conflict into 
requirements  definition since their  requirements  occa- 
sionally differed from those of potential customers. 
A common tension occurred, for instance, when mar- 
keting wanted to redesign a system to take advantage 
of new technology, while existing customers did not 
want  to lose their  investment  in software that ran 
on the current  system. On several projects, the 
r equ i r emen t s - - and  even the understanding of the 
p roduc t - -va r i ed  among strategic planning, marketing, 
and product  planning groups. The design team had to 
reduce the conflict between these contending forces in 
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their  design. This conflict varied with how deeply 
groups such as market ing understood the customer 's  
application and the limits of existing technology. Mar- 
keting groups understood why customers (who were 
not necessarily the users} would buy the system, but 
this often differed from the application-specific infor- 
mation about product  use that was needed for design. 

Software architect: Marketing came out with a 
description that had every single feature of every 
similar product  and said, "Here do this," and they 
expected us to start writ ing software. 

Resolving the conflicts among system requirements  
created a feedback cycle in which many groups pro- 
vided inputs or constraints that had be negotiated into 
a design. Some of the toughest decisions involved 
tradeoffs between system features and the current  mar- 
ket trends. Technical  requirements  were t raded off 
against business decisions involving del ivery dates and 
other market ing and sales issues. 

Vice president: Even though quali ty and perfor- 
mance may suffer, it 's better  to have people using 
your stuff and complaining than to have them us- 
ing somebody else's. 

Project Level 
Unstable requirements,  when caused at the project 
level, usually resulted from the absence of a defined 
mission. Without  a sense of mission the motivation for 
the project could not be translated into clear product 
requirements.  When projects were started for political 
reasons rather  than market  demands, requirements  
fluctuated with the prevail ing att i tudes of those who 
approved funds. Such projects often reflected senior 
management 's  desire for large organizations under  their  
authority. In such cases, product requirements  were ini- 
tially defined as those that would garner company funds, 
and the market 's  requirements  were added retrospec- 
tively and had to be updated to justify the project. 

System engineer: There 's  a big game that goes on 
to get giant projects started. You've got to figure 
out a way that everybody wins. I mean, develop- 
ment  people want  resources and big projects and 
long-term stability and something new and high- 
tech. The manager wants something with large rev- 
enue potential  and something new and exciting to 
talk about . . . .  You just have to know how to play all 
the angles . . . .  We know how to do it, but  we never 
wrote it down. We don't  want  to write it down. 

Some large projects were started to exploit new, so- 
phisticated technology in order to create a market.  The 
requirements  for supporting a new technology often 
conflicted with the needs of existing customers. In such 
cases, the project became the source for conflicting re- 
quirements that had to be resolved through managing 
product lines. In other cases, technical  advances often 
threatened to make a technology obsolete before the 

system was delivered. Addit ional  requirements  were, 
therefore, levied on a product  during development  to 
compensate for the technology's growing market  weak- 
nesses. In such cases, developers were forced to emu- 
late a post-release enhancement  process before the 
product had been delivered. 

Requirements were unstable when the initial project 
team was more interested in winning a procurement  
than in accurately estimating required costs and re- 
sources. In competit ive procurements,  some require- 
ments analyses were driven toward producing a win- 
ning proposal rather than toward accurately portraying 
the size of the system and the effort required to build it. 
Requirements had to be readjusted when the technical  
and financial risk in developing the system became 
apparent. 

Test engineer: They knew [the requirements  
were] inaccurate . . . .  They were trying to competi- 
t ively win . . . .  so the requirements  document  
looked an awful lot like a proposal. It was not ade- 
quate in any fashion to design from . . . .  If that level 
of detail  were opened, the customer would have 
understood and I don't  think [we] would have won 
the follow-on. 

A frequent conflict among requirements  occurred 
when the functionality required of the system out- 
stripped the processing or storage capacity of the speci- 
fied hardware.  In such cases, the software crisis was 
actually a symptom of a deeper crisis in the mismatch 
between the often explosive growth of requirements 
[10] compared to the limitations of available hardware.  
This crisis was accentuated when the risk and diffi- 
culty of resolving this conflict in architecting the soft- 
ware was not fully understood or accepted by either 
management  or the customer. 

Team Level 
The design team had to clarify the conflicts among re- 
quirements and constraints generated both inside the 
company and in the marketplace. Resolving some con- 
flicts required knowledge of actual user behavior that 
was scarce on some design teams. One solution was to 
design a flexible system that could be easily modified to 
accommodate future changes and technologies. To pro- 
duce a flexible product on schedule and within hard- 
ware constraints, the requirements  were rewri t ten by 
the design team to el iminate a smorgasbord of features 
and to require mult iple alternatives for a few features. 

Software architect: One of the pitfalls in our pro- 
cess occurs when . . .  marketing, engineering, [and] 
development  say, "Do we have to make the deci- 
sion on how it 's going to operate? Could you write 
it both ways?" We say, "Well, it 's going to cost 
some resources but we could." The tendency is to 
not make the decision . . . .  This leads to thinking 
that we can make everything flexible. In imple- 
mentat ion we can do fewer things, because we are 
going to do each thing eight different ways. 
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Another  solution to conflicting requirements  was to 
priorit ize them and include as many as possible in the 
specification in order of importance. This technique 
was effective when conflicts resulted from problems 
such as storage limitations. Even so, a consensus on the 
specifications was often difficult to bui ld among devel- 
opment groups that had to accept and abide by the 
rankings. Even after priorities, were negotiated, a con- 
sensus was hard to maintain 'without strong leadership 
to oversee adherence to priorities. When the pr imary 
constraint  was schedule, the conflicts might be resolved 
by developing an implementat ion plan that phased in 
features across system releases. 

System engineer: The most difficult thing was al- 
locating the features into memory,  priorit izing and 
making the decisions, getting people to agree to 
what  we are and are not putt ing in. 

Even when the requirements  were stable, specifica- 
tions occasionally fluctuated because designs for differ- 
ent components  were not tightly coordinated. In mak- 
ing a design decision, designers often made incorrect 
assumptions about how another  group had interpreted 
a requirement.  In such cases, a requirement  was un- 
stable not over time, but  over different components of 
the system. Without  tight coupling of interface deci- 
sions among components,  inconsistencies became ap- 
parent only at integration time. 

Project manager: When we see problems it 's often 
because they don' t  unders tand that you don' t  go 
bui ld computer  programs and bui ld hardware  and 
someday at the waterfront  integrate them. 

Unresolved design issues were a great concern for 
system engineers who lamented having no tools for 
capturing issues and tracking their  status. The ratio of 
unresolved issues to the number  of issues recorded may 
be a valuable indicator of design stabili ty and actual 
progress in the design phase. Failure to resolve issues 
frequently did not become obvious until  integration 
testing. 

Individual Level 
New requirements  frequently emerged during develop- 
ment  since they could not be identified until  portions 
of the system had been designed or implemented.  The 
need for some requirements  could only be determined 
after the relevant questions had been posed. Designers 
also realized that many stated requirements  were open 
to interpretation,  and therefore, it was difficult to agree 
on the proper level of detail  for specifying either the 
requirements  or the design. 

Many designers thought that requirements  should act 
as a point of departure for clarifying poorly understood 
functions interact ively with the customer. They argued 
that specifications should not be hardened while still 
learning about the application domain or the capabili- 
ties of the proposed architecture.  That is, specification 
should not be formalized any faster than the rate of 
uncer ta inty  about technical  decisions is reduced. 

Customer representative: You will never really be 
able to specify enough detail. It doesn' t  mat ter  
how. You can even take the actual system and 
write the specs around it and still come out 
wrong . . . .  The specifications are something you 've 
got to take on trust. 

A hidden source of instabil i ty in the requirements  
was the creeping elegance that occurred when pro- 
grammers went  beyond the stated requirements  and 
continued to add system features. Even with strict con- 
trols on the growth of new code, managers were frus- 
trated in trying to slow the spread of creeping features. 
These features consti tuted new requirements  and were 
the bottom-up, programmer-dr iven counterpart  to 
customer-driven requirements  fluctuation. Most dis- 
turbing, their  impact on project schedule and perfor- 
mance was often hidden from view. 

Quali ty assurer: We've  had cases where  people 
will fake an error in the system in order to be able 
to pull  the c o d e . . ,  so that they could replace it 
with a whole new implementat ion.  

Fluctuating and Conflicting Requirements Summary 
Fluctuat ion and conflict among requirements  usually 
resulted from market  factors such as differing needs 
among customers, the changing needs of a single cus- 
tomer, changes in underlying technologies or in com- 
petitors '  products, and, as discussed earlier, from 
misunders tanding the application domain. Require- 
ments problems could also emerge from such internal  
company sources as marketing, corporate politics, and 
product line management.  When presented with the 
requirements  statement,  the design team often negoti- 
ated to reduce conflicts and limit requirements  to those 
that could be implemented  within schedule,  budget, 
and technical  constraints. Nevertheless, it was difficult 
to enforce agreements across teams, and programmers 
often created a h idden source of requirements  fluctua- 
tion as they added unrequired  enhancements .  Although 
requirements  were in tended as a stable reference for 
implementat ion,  many sources conspired, often unwit-  
tingly, to make this stabili ty illusory. The communica-  
tion and coordination processes within a project be- 
came crucial to coping with the incessant fluctuation 
and conflict among requirements.  

COMMUNICATION AND COORDINATION 
BREAKDOWNS 
A large number  of groups had to coordinate their  activ- 
ities, or at least share information, during software de- 
velopment.  Figure 6 presents some of the groups men- 
t ioned during interviews, clustered into behavioral  
layers according to their  remoteness from communica-  
tion with individual  software engineers [56]. Remote- 
ness involved the number  of nodes in the formal com- 
municat ion channel  that information had to pass 
through in order to link the two sources. The more 
nodes that information had to traverse before commu- 
nication was established, the less l ikely communicat ion 
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was to occur. This model implies that a software engi- 
neer would normal ly  communicate  most frequently 
with team members,  slightly less frequently with other 
teams on the project, much less often with corporate 
groups, and, except for rare cases, very infrequently 
with external  groups. Communicat ion channels across 
these levels were often precondit ioned to filter some 
messages (e.g., messages about the difficulty of making 
changes) and to alter the interpretat ion of others (e.g., 
messages about the actual  needs of users). In addit ion 
to the hindrances from the formal communicat ion 
structure, communicat ion difficulties were also due 
to geographic separation, cultural  differences, and 
environmental  factors. 

FIGURE 6. Remoteness of communications expressed in the 
layered behavioral model, 

For example,  communicat ion at the team level 
mostly concerned system design, implementat ion,  or 
personal issues. At the project level, proportionately 
more of the communicat ion was related to coordinating 
technical activities and discussing constraints on the 
system. Communicat ion at the company level generally 
concerned product  attributes, progress, schedules, or 
resources. Communicat ion with external  organizations 
involved user requirements,  contractual  issues, opera- 
tional performance, del ivery planning, and future 
business. Thus, communicat ion to each higher level 
involved a change in the content of the message, a dif- 
ferent context for interpreting the message, and a 
more restricted channel  for transmission (e.g., the 
more remote the level, the less the opportunity for 
face-to-face transmission). 

Individual Level 
Documentation is one form of communicat ion among 
project members.  Most interviewees,  however,  indi- 
cated frustration with the weakness of documentat ion 
as a communicat ion medium. We found little evidence 
that documentat ion had reduced the amount  of com- 
municat ion required among project personnel. Tardi- 
ness and incompleteness were not the only problems 
with documentation. Many required formats were 
insufficient for communicat ing some of the design 
information needed throughout  the life cycle. 

Programmer: Our  documentat ion is intended to 
be read; it is not "MIL-standards-like." 

Documentat ion practices were usual ly vulnerable to 
other project pressures. For instance, as the size of the 
project grew, project members  had to make a tradeoff 
between t ime devoted to communicat ing verbal ly  with 
colleagues and time for recording wri t ten information 
for future project members.  Many communicat ion re- 
lated activities that appeared to be good software engi- 
neering practices were almost unworkable  when scaled 
up to support communicat ion on large projects with 
deadline pressures. 

Programmer: I think this is the way it always 
turns out with this stupid design of large systems. 
In the b e g i n n i n g . . ,  there were 3 of us. How many 
lines of communicat ion are there, 1, 2, 3? But once 
you go to 15 people it can get out of hand . . . .  In the 
beginning, it was easy to keep track of what  was 
going on. It was only after reaching the critical 
m a s s . . ,  that things began falling into the cracks, 
and we were losing track . . . .  ! used to religiously 
keep track of the [change notices], but  now I don't  
think I 've looked at them in 6 months. I just 
couldn' t  keep up with everything else going on. 
There was just so much going on. 

Most project members had several nets of people they 
talked with to gather information on issues affecting 
their  work [50]. Similar to communicat ion structures 
observed in R&D laboratories [3, 4], each net might 
involve different sets of people and cross organizational 
boundaries.  Each net supported a different flow of in- 
formation, as shown in Figure 7. When used effectively, 
these sources helped coordinate dependencies among 
project members and supplemented their  knowledge, 
thereby reducing learning time. Integrating information 
from these different sources was crucial to the perfor- 
mance of individual  project members.  

System engineer: I get my r e q u i r e m e n t s . . ,  by 
talking. I spend a third of my time talking with 
requirements  people and helping them negotiate. 

Team Level 
The communicat ion needs of teams were poorly served 
by wri t ten documentat ion since it could not provide 

FIGURE 7. Examples of a programmer's communication nets. 
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the dialectic necessary to resolve misunderstandings 
about requirements  or design decisions among project 
members.  Rather, forging a common understanding of 
these issues required interaction. 

System engineer: In the dynamics of the team 
there is only one way- -ve rba l  . . . .  Paper disap- 
pears, it gets in a stack. I 'm sure people read it . . . .  
but the ul t imate method for managing require- 
ments level activity with a small group of 10 or 20 
people is 10 hours of meetings a day. And then you 
go work 5 hours. 

Many techniques were used to organize and commu.. 
nicate a shared system model. Successful projects usu- 
ally established common representat ional  conventions 
to facilitate communicat ion and to provide a common 
reference for discussing system issues. From a team 
perspective, this sort of representat ion was valuable as 
a common dialect for project argumentation, rather 
than as a basis for static documentation.  

System engineer: The ER diagram means that  
everybody speaks the same language. Developers, 
designers, human  performance people, we all use 
the same language . . . .  It was 6 months or so before 
it sett led down, but  once it did, we could resolve 
all problems in terms of the diagram. 

Once the development  team had accepted common 
representat ional  conventions (a process that could take 
six months or longer), its members  could resolve dis- 
agreements and misunderstandings by referencing the 
structures in a diagram. System engineers were usually 
adamant  about having the freedom to select a represen- 
tational format that matched the application domain's  
structure. After selecting and tailoring the format, con- 
siderable effort was spent to establish agreement on 
diagrammatic conventions. In the early stages, disagree- 
meats  over naming conventions could take as much 
time as did system decomposition. 

System engineer: At least they know to carry 
around their  dict ionary when they talk to us. Being 
done with a phase of development  . . . .  what  does 
"done" mean? We could never settle on that, so we 
settled on what  "done done" means. The first 
"done" means internal  done, and the second 
"done" means external  done. 

Project Level 
Project managers often found it difficult to establish 
communicat ion between project teams unless commu- 
nication channels opened naturally.  Since documenta-  
tion did not provide sufficient communicat ion,  reviews 
were often the most effective channels. In fact, commu- 
nication was often cited as a greater benefit of formal 
reviews than was their  official purpose of finding de- 
fects. At other times, communicat ion among teams was 
thwarted by managers for reasons that ranged from the 
politics of forging a lead over other teams to a lack of 
appreciation for coordination :requirements. 

Some communicat ion breakdowns between project 
teams were avoided when one or more project mem- 
bers spanned team or organizational boundaries [1]. 
One type of boundary spanner was the chief system engi- 
neer who translated customer needs into terms under-  
stood by software developers. Boundary spanners trans- 
lated information from a form used by one team into a 
form that could be used by other teams. Boundary 
spanners had good communicat ion skills and a willing- 
ness to engage in constant face-to-face interaction; they 
often became hubs for the information networks that 
assisted a project 's  technical  integration. In addition, 
they were often crucial in keeping communicat ion 
channels open between rival groups. 

System engineer: The parochial  interest  was a big 
deal. There was a lot of concern about loss of con- 
trol over some aspect of the system and personali ty 
entered into that a lot . . . .  Because ! appeared rela- 
t ively harmless to everybody in the organization, 
I didn ' t  have any trouble moving back and forth 
from one group to the other. But there were times 
when [people would ask me], "When you ' re  going 
to be talking to such-and-such would you please 
tell him to . . . .  " that type of thing. 

The social structure of the project was occasionally 
factored into architectural  decisions. The system parti- 
t ioning that reduced connectivi ty among components 
also affected communicat ion among project personnel. 
Higher connectivi ty among components  required more 
communicat ion among developers to maintain agreed 
upon interface definitions. Occasionally, the parti t ion- 
ing was based not only on the logical connectivi ty 
among components,  but  also on the social connectivi ty 
among the staff. 

System engineer: The real p r o b l e m . . ,  was parti- 
t ioning the system enough so we could minimize 
the interfaces required be tween people. In fact, it 
was more important  to minimize the interfaces 
between system engineers than it was to make the 
system logical from the viewpoint  of the user. 

Company Level 
Companies usually established formal processes for 
making and reviewing decisions about the design of 
large systems. These structures, however,  were often 
ineffective for communicat ing design problems that 
arose in sections of the organization that  were not part 
of the formal process. Rather, informal personal con- 
tacts were frequently the most effective way to trans- 
mit messages across organizational boundaries.  

System engineer: The original impetus that I got 
to define something that could be used for all the 
machines came from, surprisingly enough, same 
member  of the Board of Directors who is not an 
employee of the corporation, [and] who couldn' t  
understand why  we had different [computational 
platforms] . . .  
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Interviewer: You just knew him? How did you 
get the message from him? 
System engineer: A dove descended with it. You 
know how it is. 

When groups such as marketing, systems engineer- 
ing, software development,  quali ty assurance, and 
maintenance reported to different chains of command,  
they often failed to share enough information. This 
problem is not surprising in a government environment  
where security requires tactical information about a 
system to be classified. Yet, even on commercial  proj- 
ects information was occasionally wi thheld  from a 
development group for reasons ranging from political 
advantage to product security. 

Software architect: Even the product  description 
for this project is a secret document  for only people 
who need to know. I know that there were at least 
three revisions that I didn ' t  hear about until  6 
months after the fact. Some of the changes we are 
making now might have been avoided if we would 
have had earl ier  access to it. 

Even when all of the interacting teams were in the 
same division, work on different phases (e.g., proposal, 
definition, development,  delivery, and maintenance) of 
a large project was often performed by different groups. 
Figure 8 presents a typical work flow among teams re- 
sponsible for different phases. Communicat ion prob- 
lems occurred in the transit ion between phases when 
groups transferred intermediate  work products to suc- 
ceeding groups. When a later redesign was under taken 
and the previous design team had dispersed, these 
problems were exacerbated. 

I:=,L,. :::::',::;°. i!i}2: ° i!o;:!i:; i iT::" 
FIGURE 8. Teams responsible for different phases of the life 

cycle. 

Although documentat ion was not accepted as an 
alternative to talking with colleagues, it was often the 
main source of communicat ion between successive 
teams. Unfortunately, much of the needed information 
had not been recorded because of schedule pressures. 
Also, communicat ing system knowledge between these 
teams depended on continuing personnel from one 
team to the next. 

System engineer: We didn ' t  have enough docu- 
mentation. We didn ' t  have enough code review. 
We didn' t  have enough design review . . . .  We're 
going to suffer because all the smart  guys who de- 
veloped the system are now going to l e a v e . . ,  and 
what  are the poor [expletive deleted] who have to 

maintain the system going to d o ? . . .  How do you 
get our management  to see that that 's  important  
and to give us the brownie points for doing it. 

Business Milieu 
Coordinating understanding of an application and its 
environment  required constant communicat ion be- 
tween customers and developers. Developers had to 
clarify the meaning of terms and the associations be- 
tween different objects or processes to avoid misinter- 
preting a requirement.  Contact between customer and 
developer needed to be direct since intermediaries  
often had difficulty identifying the subtleties that had 
been misunderstood. This communicat ion was required 
to establish a mutual  frame of reference. 

Customer representative: I think [we] had to 
learn as well as [the developers] . . . .  At the time 
we wrote the specification, we did not appreciate 
that  it could be interpreted any other way . . . .  This 
part icular  thing was so obvious to me as an opera- 
tor, you know, it 's common knowledge. It's one of 
the basics you teach the unini t iated student. 
Everyone knows . . . .  I should have known. 

On most large projects, the customer interface was an 
organizational communications issue and this interface 
too often restricted opportunities for developers to talk 
with end users. For instance, the formal chain of com- 
municat ion between the developer and the end user 
was often made more remote by having to traverse two 
nodes involving the developer 's  market ing group and 
the end user 's  manager. At the same t ime this interface 
was often cluttered with communicat ions from non- 
user components of the customer 's  organization, each 
with its part icular  concerns. Typically, development 
organizations said they would like to have, but could 
not get, a single point of customer contact for defining 
system requirements.  None of the large projects we 
interviewed had a lone point of customer contact for 
defining requirements.  

Often, the largest problem in managing a government 
contract involved the complexity of the customer inter- 
face [58]. This interface usually included many differ- 
ent agencies, each with a different agenda and each 
representing itself as the customer. Figure 9 depicts a 
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FIGURE 9. Customer interfaces on a DOD project. 
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simplified set of interfaces for a large contract with the 
Department of Defense (DOD). The interface might be 
comprised of organizations such as: 

• senior DOD officials who championed the system 
• the procurement office thai: tracks costs, schedules, 

and acceptance criteria 
• an operational systems engineering group involved in 

specifying the system 
• the commanders whose troops will use the equip- 

ment 
• the actual operators of the ,equipment 
• the Independent Validation. and Verification (IV&V) 

contractor who inspects the software artifacts for 
DOD 

The coordination of these projects became further com- 
plicated when the development organization was itself 
a customer for the components built by its subcontrac- 
tors. 

One of the most significant challenges to governmen't 
or commercial deve lopmen t  teams was to coordinate 
communications from different customer sources to 
develop a consistent understanding of the customer's 
requirements. When several customer sources gave 
inconsistent input, project personnel had to negotiate 
among them to clarify requirements. Conversely, differ- 
ent project members needed to provide consistent an- 
swers to the customer, and establishing a single point 
of contact for coordinating these communications was 
difficult. 

When the communication channels to the customer 
were remote, necessary changes were often stifled. 
Communicating with DOD was especially difficult 
when the software project was subcontracted from a 
hardware company that held the prime contract. The 
approval cycle required for a change to the specifica- 
tions was often too time-consuming to justify any but 
the most necessary modifications. 

Programmer: I got myself in trouble with a pro- 
gram manager one time because I said, "I know this 
[function] is wrong so we're just going to change 
it." We changed it and made it work. But he said, 
"No, no, no, go back and do it the way the spec 
says, because that spec came from the customer." 
. . .  It is still not c h a n g e d . . ,  to be correct. That 
particular function gives nonsense answers. 

Designers needed operational scenarios of system use 
to understand the application's behavior and its envi- 
ronment. Unfortunately, these scenarios were too sel- 
dom passed from the customer to the developer. Cus- 
tomers often generated such scenarios in determining 
their requirements but did not record them and ab- 
stracted them out of the requirements document. With- 
out deep application knowledge, designers worked from 
the obvious scenarios of application use and were una-. 
ble to envision problematic and exceptional conditions 
the customer would ultimately want handled. 

In some cases, classified documents contained opera- 
tional scenario information, but the software designers 

could not obtain the documents from the customer. It 
was assumed that developers did not have a need to 
know. There might have been less need for system pro- 
totypes meant to collect customer reactions if informa- 
tion generated by potential users had been made avail- 
able to the project team. That is, many projects spent 
tremendous time rediscovering information that, in 
many cases, had already been generated by customers, 
but not transmitted to developers. 

Communicat ions  and Coordination Summary 
Large projects required extensive communication that 
was not reduced by documentation. Project staff found 
the dialectic process crucial for clarifying issues. Partic- 
ularly during early phases, teams spent considerable 
time defining terms, coordinating representational con- 
ventions, and creating channels for the flow of informa- 
tion. Artificial (often political) barriers to communica- 
tion among project teams created a need for individuals 
to span team boundaries and to create informal com- 
munication networks. Organizational and temporal 
boundaries made some communication channels espe- 
cially remote. Organizational boundaries hindered un- 
derstanding the requirements, while temporal bounda- 
ries buried the design rationale. The complexity of the 
customer interface hindered the establishment of stable 
requirements and increased the communication and 
negotiation costs of the project. Since no single group 
served as the sole source of requirements in either 
commercial or government environments, organi- 
zational communications became crucial to managing 
the project. 

CONCLUSIONS 

The Behavioral Processes of Software Development 
The problems elaborated in the preceding sections were 
described many times across projects that varied in 
size, technology, company, and customer. The way 
problems manifested themselves though, differed 
among projects. Chronicled by Weinberg [61], Brooks 
[14], Fox [27], and others, these problems have sur- 
vived for several decades despite serious effort at im- 
proving software productivity and quality. We are not 
claiming to have discovered new insights for engineer- 
ing management. Rather, we are trying to organize ob- 
servations about the behavioral processes of large sys- 
tems design to help identify which factors must be 
attacked to improve overall project performance. We 
are seeking to understand the mechanisms underlying 
these problems in order to design more effective soft- 
ware development practices and technology. The ques- 
tion is not whether we learned something new, but 
what did we observe that keeps us from acting on all 
those things we already knew. 

Our interviews indicated that developing large soft- 
ware systems must be treated, at least in part, as a 
learning, communication, and negotiation process. 
Much early activity on a project involved learning 
about the application and its environment, as well as 
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new hardware, new development tools and languages, 
and other evolving technologies. Software developers 
had to integrate knowledge from several domains be- 
fore they could perform their jobs accurately. Further, 
as the project progressed they had to learn about design 
and implementation decisions being made on other 
parts of the system in order to ensure the integration of 
their components. Characteristically, customers also 
underwent a learning process as the project team ex- 
plained the implications of their requirements. This 
learning process was a major source of requirements 
fluctuation. 

A small subset of the design team with superior ap- 
plication domain knowledge often exerted a large im- 
pact on the design. Collaborative problem solving is 
related to productivity more often in small, rather than 
large, teams [23]. Similarly, the small, but influential, 
design coalitions that developed on numerous projects 
represent the formation of a small team in which col- 
laboration was more effective. This decomposition of a 
large design team into at least one smaller coalition 
occurred when a few designers perceived their tighter, 
less interrupted collaboration would expedite the crea- 
tion of a workable design. Exceptional designers, when 
available, were at the heart of these coalitions and 
accepted responsibility for educating the design team 
about the application and ensuring their technical 
cohesiveness. 

Fluctuation and conflict among requirements af- 
flicted large system development projects continuously. 
Whether they are called ill-structured problems [47] or 
wicked problems [49], the unique obstacles encountered 
in large software projects typically did not plague small, 
well-understood software applications with complete 
and stable specifications. These requirements problems 
emerged from the learning process at the heart of the 
dialectic between customers and developers. There was 
a natural tension between getting requirements right 
and getting them stable. Although this tradeoff ap- 
peared to be a management decision, it was just as 
often adjudicated by system engineers. Fluctuation and 
conflict among requirements were exacerbated when 
several organizational components presented them- 
selves as the customer and the developers had to nego- 
tiate a settlement. 

Organizational boundaries to communication among 
groups both within companies and in the business mi- 
lieu inhibited the integration of application and compu- 
tational knowledge. These communication barriers 
were often ignored since the artifacts produced by one 
group (e.g., requirements documents from marketing) 
were assumed to convey all the information needed by 
the next group (e.g., system designers). Designers com- 
plained that constant verbal communication was 
needed between customer, requirements, and engineer- 
ing groups. Organizational structures separating engi- 
neering groups (hardware, software, and systems) often 
inhibited timely communication about application 
functionality in one direction and feedback about im- 
plementation problems that resulted from system de- 
sign in the other direction. When coalitions formed 

around conflicting views of the design, they typically 
formed along organizational lines. 

Although far from the only issues participants de- 
scribed, requirements issues were a recurring theme in 
our interviews. The three problems we described pro- 
vide, among other things, three views of the require- 
ments problem: how system requirements were under- 
stood, how their instability affected design, and how 
they were communicated throughout a project. Al- 
though a circumscribed requirements phase can be 
identified in most software process models, require- 
ments processes occur throughout the development 
cycle. 

Implications for Software Tools and Practices 
The descriptions provided in our interviews indicate 
how productivity and quality factors influenced project 
performance. Three issues, in particular, must be ad- 
dressed if software productivity and quality are to be 
improved. The first is to increase the amount of appli- 
cation domain knowledge across the entire software 
development staff. Designers of software development 
environments should discover ways for these environ- 
ments to creatively facilitate the staff-wide sharing and 
integration of knowledge. 

Second, software development tools and methods 
must accommodate change as an ordinary process and 
support the representation of uncertain design deci- 
sions. For instance, the essence of simulation and pro- 
totyping is a process of exploration, discovery, and 
change. Whether design decisions are delayed, or 
whether new requirements are negotiated among sev- 
eral customer components, change management and 
propagation is crucial throughout the design and devel- 
opment process. 

Finally, any software development environment must 
become a medium of communication to integrate peo- 
ple, tools, and information. If information created out- 
side of the software tools environment must be man- 
ually entered, developers will find ways around using 
the tools, and information will be lost. Lost information 
and poor communication facilities make the coordina- 
tion task more difficult. Thus, three capabilities that we 
believe must be supported in a software development 
environment are knowledge sharing and integration, 
change facilitation, and broad communication and 
coordination. 

Software development tools and practices had disap- 
pointingly small effects in earlier studies, probably be- 
cause they did not improve the most troublesome pro- 
cesses in software development. Understanding the 
behavioral processes of software development allows us 
to evaluate the claims for software tools and practices. 
Conceptually, this understanding helps us reason 
whether a given tool or practice can affect the pro- 
cesses underlying the problem it claims to solve. Empir- 
ically, it helps identify which processes should be 
measured in evaluating whether the tool or practice 
can spark improvement. If a tool is used in individual 
activities by designers, and the benefits they experience 
individually do not scale up to reduce a project's effort 
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or mistakes, then we should not be surprised when 
little impact shows up in productivity and quality data. 
If a tool or practice failed to impact at least one of the 
three problems we discussed in this article, we would 
be surprised if it had substantial impact on the per- 
formance of large projects. 

Implications for Project Management 
Although we initiated this project to study organi- 
zational level factors in software development, we were 
constantly confronted with the impact of individual 
talent and experience on a project. After observing sim- 
ilar effects in his productivity data, Boehm concluded: 
"Personnel attributes and human relations activities 
provide by far the largest source of opportunity for 
improving software productivity" [9 p. 666]. Brooks 
reiterated this point: "The central question in how to 
improve the software art centers, as it always has, on 
people" [15 p. 18]. This view was reflected with re- 
markable consistency in interviews with vice presi- 
dents from different companies. 

Vice president 1: I guess if you had to pick one 
thing out that is most important in our environ- 
ment, I'd say it's not the tools that we use, it's the 
people. 
Vice president 2: The most important ingredient 
that was successful on this project was having 
smart peop l e . . .  Very little else matters in my 
opinion . . . .  The most important thing you do for a 
project is selecting the staff . . . .  The success of the 
software development organization is very, very 
much associated with its ability to recruit good 
people. 
Vice president 3: The only rule I have in manage- 
ment is to ensure that I have good people--real 
good people--and that I grow good people, and that 
I provide an environment where good people can 
produce. 

Given the amount of knowledge to be integrated in 
designing a large software system and the inability of 
current technology to automate this integration [48], 
these opinions are not surprising. Contributions by good 
people do not come just from their ability to design and 
implement programs. A myriad of other processes-- 
resolving conflicting requirements, negotiating with the 
customer, ensuring that the development staff shares a 
consistent understanding of the design, and providing 
communications between two contending groups--are 
crucial to project performance and require faculties 
that no tool or practice can provide. 

The constant need to share and integrate information 
suggests that just having smart people is not enough. 
The communication necessary to develop a shared vi- 
sion of the system's structure and function, and the 
coordination necessary to support dependencies and 
manage changes on large system projects are team is- 
sues. Individual talent operates within the framework 
of these larger social and organizational processes. The 

influence of exceptional designers was exercised 
through their impact on other project members and 
through their ability to create a shared vision to orga- 
nize the team's work. Recruiting and training must be 
coupled with team building [55] to translate individ- 
ual talent into project success. Thus, the impact of pro- 
cesses at one level of the layered behavioral model 
must be interpreted by their impact on processes at 
other levels. 

Implications for Software Process Models 
A typical statement that we heard from participants 
was that, you've got to understand, this isn't the way 
we develop software here. This type of comment sug- 
gested that these developers held a model of how soft- 
ware development should occur, and they were frus- 
trated that the conditions surrounding their project 
would not let them work from the model. The fre- 
quency of this comment also suggested that the model 
most developers envisioned accounted poorly for the 
environmental conditions and organizational context of 
software development. The participants we interviewed 
were uniformly motivated to do a good job, but they 
had to mold their development process to navigate 
through a maze of contingencies. 

These interviews provided a clearer understanding of 
such crucial processes as learning, technical communi- 
cation, requirements negotiation, and customer interac- 
tion. These processes are poorly described in software 
process models that focus instead on how a software 
product evolves through a series of artifacts such as 
requirements, functional specifications, code, and so 
on. Existing software process models do not provide 
enough insight into actual development processes to 
guide research on software development technologies. 
Models that only prescribe a series of development 
tasks provide no help in analyzing how much new in- 
formation must be learned by a project staff, how dis- 
crepant requirements should be negotiated, how design 
teams resolve architectural conflicts, and how these 
and similar factors contribute to a project's inherent 
uncertainty and risk. Boehm's spiral model is a promis- 
ing attempt to manage these issues at a macro level 
[11]. 

The layered behavioral model must be integrated 
with evolutionary process models in order to create a 
comprehensive model of the software development 
process. When we overlay cognitive, social, and organi- 
zational processes on the phased evolution of software 
artifacts, we begin to see causes for bottlenecks and 
inefficiencies in development. The more deeply project 
managers understand these behavioral processes, the 
greater their insight into the factors that determine 
their success. 

The layered behavioral model encourages greater 
focus on the human processes that exert so much influ- 
ence on software productivity and quality. For this 
model to mature beyond its current descriptive state, 
rules of aggregation must be posed that provide the 
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model with analytic power for at least some develop- 
ment processes. Aggregating behavior across layers in 
the model exposes the effects of new processes added at 
each layer. Aggregation also indicates how the impact 
of processes such as communication may not scale lin- 
early across layers. Behavioral processes at each layer 
are useful analytically only if they make independent 
contributions to understanding software development 
processes. The relative importance of each layer's con- 
tribution will vary with the process or problem under 
analysis. Further work with this model may indicate 
analyses for which new layers need to be identified or 
existing layers combined. Our goal is to fashion a useful 
tool for analyzing how different factors in software de- 
velopment affect project behavior--and, ultimately, 
project outcomes. 

Implications for Ecological Research on Professional 
Programming 
This study provides an ecological perspective on soft- 
ware design, since software design problems were as- 
sessed against the backdrop of the working environ- 
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ment in which they occurred. Ours, however, was not a 
purely ecological analysis. Traditionally, the ecological 
perspective has only focused on how characteristics of 
the situation affected human behavior [5, 45]. Rather, 
the information in our interviews forced us to account 
for differences among individual project members and 
to determine how these differences interacted with var- 
iations among situations. Therefore, our analysis is 
more accurately characterized as interactionist [41, 52, 
53] since we attributed variation in software productiv- 
ity and quality to differences between both people and 
situations and their interaction. 

The exploratory ecological research reported here ex- 
posed many of the processes that affect software pro- 
ductivity and quality. The MCC Software Technology 
Program is using these insights as problem-driven input 
to its research on advanced software design environ- 
ments. As research artifacts are developed, the focus of 
our empirical research will shift from exploratory to 
evaluative. Evaluative research will investigate how 
the most important productivity and quality factors can 
be improved by changing either the process or technol- 
ogy of software development. 

APPENDIX A: FIELD 

Interview Format 
This field study consisted of structured interviews [13, 
25, 60, 62] with design team members who held differ- 
ent roles (e.g., system engineer, lead software architect, 
project manager). In designing these structured inter- 
views, each member of our field study team indepen- 
dently generated a set of questions for each level in the 
layered behavioral model and indicated the project 
roles for each question. These questions focused on 
such upstream activities as customer interaction, re- 
quirements analysis, design meetings, and project com- 
munications. The questions were then reduced to a sin- 
gle set that was reviewed by representatives from each 
participating company to ensure their relevance across 
software environments. 

The questions were open-ended and allowed partici- 
pants to formulate answers in their own terms. Thus, 
the questions were points of departure for participants 
to describe their opinions about important events and 
challenges during software design, and their insights 
were explored in depth. Participants were encouraged 
to recall as much information as possible about the 
process of designing their system and the factors that 
affected its productivity and quality. Questions produc- 
ing identical answers over a number of projects were 
eventually dropped from the interviews, and new ques- 
tions were added when we learned of additional pro- 
cesses needing investigation. 

Interviewers worked in pairs [38] with one inter- 
viewer taking the lead, while the other recorded notes 
about important points. This division of responsibilities 
increased rapport with participants, since they had the 

STUDY METHODS 

questioner's full attention, We found tandem interview- 
ing had two additional advantages. First, interviewers 
often exchanged the lead role several times during the 
interview as topics changed, or as one interviewer be- 
gan to tire. The ability to shift roles kept the pace of the 
interview lively and provided timely opportunities for 
shifts in focus. Second, the interviewer exercising the 
support role often requested deeper explanations of im- 
portant points not pursued by the lead interviewer. 

We piloted our field study methods on a project in 
our own laboratory and videotaped our interviews for 
study and critique. We also conducted a pilot field 
study an a participant company project. Further, prior 
to beginning formal data collection we worked with an 
anthropologist/psychologist team experienced in inter- 
viewing software development projects in order to re- 
fine our methods and enhance participants' willingness 
to reveal their experiences. 

Interview Bias 
The information gathered from these interviews was 
subjective. By interviewing numerous participants in 
varying positions (e.g., manager, designer), we at- 
tempted to balance the perspectives presented on each 
project. Nevertheless, bias can result from various in- 
teractions between the interviewers and respondents 
which can affect interview data. We will describe the 
most significant biases in our methods and explain how 
we minimized their impact. 

Warwick and Lininger [60] warn of four interviewing 
mistakes that we attempted to minimize. First, reshap- 
ing questions to match the participant's role in the proj- 
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ect presented few problems, since we were not attempt- 
ing to derive quantitative data from the responses. 
Second, tandem interviews increased the probing nec- 
essary to obtain full explanations of answers. Third, 
tape recording eliminated data recording errors. Fi- 
nally, we did not have to motivate participants, since 
most were anxious to discuss their work with people 
interested in listening. Some even returned after hours 
to complete interviews. 

The bias introduced into the interview data by the 
participants was a more serious concern. Of the various 
types of participant bias discussed in the interviewing 
literature, three presented the greatest problems for in- 
terpreting our data. The social desirability bias occurred 

when participants constructed answers to conform to 
the norms of their location or professional group. The 
self-presentation bias occurred when participants de- 
scribed their role in past events in a more favorable or 
i m p o r t a n t  l i g h t  t h a n  w a s  a c t u a l l y  t h e  c a s e .  T h e  plausi- 

bility bias o c c u r r e d  w h e n  p o r t i o n s  o f  a n  e v e n t  h a d  b e e n  

forgotten and were reconstructed with plausible expla- 
nations that differed from the actual events. Recalling 
past events is a reconstructive process [39]. We at- 
tempted to detect these biases by deeply probing parti- 
cipant's answers and comparing explanations of the 
same events with answers provided by other partici- 
pants to piece together the most likely sequence and 
explanation of events on a project. 

Acknowledgments. We recognize strong contributions 
to this research from Vincent Shen, who assisted in the 
collection and summary of the interview data, and from 
Barbara Smith, who spent so many hours transcribing 
tapes. We thank the remaining members of the MCC- 
STP empirical studies team (Diane Walz, Raymonde 
Guindon, and Nancy Pennington} for their thoughtful 
contributions, and our colleagues who provided insight- 
ful reviews (Jim Babcock, Barry Boehm, Fred Brooks, 
Jack Carroll, Jonathan Grudin, Peter Marks, Colin Potts, 
Stan Rifkin, Ben Shneiderman, Elliot Soloway, and 
Jerry Weinberg}. We also thank Dani and Jerry Wein- 
berg for help in refining interview techniques and Les 
Belady for his continuing support of our Empirical 
Studies of Software Design project. We are indebted to 
the companies in MCC's Software Technology Program 
and their employees who candidly participated in this 
study, and we thank the company liaisons for arranging 
these interviews. Brief reports of this research have ap- 
peared in the proceedings of the Ninth International 
Conference on Software Engineering, the Eleventh 
NASA Software Engineering Workshop, and the Second 
Workshop on Empirical Studies of Programmers. 

REFERENCES 
1. Adams, J.S. The structure and dynamics of behavior in organi- 

zational boundary roles. In Handb. Ind. Organ. Psychol., Ed. M.D. 
Dunnette. Rand-McNally, Chicago, (1976}, pp. 1175-1199. 

2. Adelson, B., and Soloway, E. The role of domain experience in 
software design. IEEE Trans. Softw. Eng. 11, 11 {Nov. 1985), 1351- 
1360. 

3. Allen, T.J. Communication networks in R&D laboratories. R&D 
Manage. 1, 1 (Jan. 1970), 14-21. 

4. Allen, T.J. Organizational structure, information technology, and 
R&D productivity. IEEE Trans. Eng. Manage. 33, 4 (Apr. 1986J, 212- 
217. 

5. Barker, R.G. Ecological Psychology: Concepts and Methods for Studying 
the Environment of Human Behavior Stanford Univ. Press, Pale Alto, 
Calif., 1986. 

6. Barstow, D.R. Domain-specific automatic programming. IEEE Trans. 
Soflw. Eng. 11, 11 (Nov. 1985), 1321-1336. 

7. Belady, L.A. The Japanese and software: Is it a good match? IEEE 
Comput. 19, 6 {June 1986}, 57-61. 

8. Benbasat, I., Goldstein, D.K., and Mead, M. The case research strat- 
egy in studies of information systems. MIS Q. 11, 3 (Mar. 1987), 
369-386. 

9. Boehm, B.W. Software Engineering Economics. Prentice-Hall, Engle- 
wood Cliffs, N.J., 1981. 

10. Boehm, B.W. Improving software productivity. IEEE Comput. 20, 9 
(Sept. 1987), 43-57. 

11. Boehm, B.W. A spiral model of software development and mainte- 
nance. IEEE Comput. 21, 5 (May 1988}, 61-72. 

12. Bouchard, T.J. Field research methods. In Handb. Ind. Organ. Psy- 
chol., Ed. M.D. Dunnette. Rand-McNally, Chicago, (1976), pp. 
363-413. 

13. Brenner, M., Brown, J., and Canter, D. The Research Interview: Uses 
and Approaches. Academic Press, London, 1985. 

14. Brooks, F.P. The Mythical Man-Month. Addison-Wesley, Reading, 
Mass., 1975. 

15, Brooks, F.P. No silver bullet. IEEE Comput. 20, 4 (Apr. 1987), 10-19. 
16. Card, D.N., McGarry, F.E., and Page, G.T. Evaluating software engi- 

neering technologies. IEEE Trans. Soflw. Eng. 13, 7 (luly 1987}, 845- 
851. 

17. Christiansen, D. On good designers. IEEE Spectrum 24, 5 (May 1987), 
25. 

18. Curtis, B. Measurement and experimentation in software engineer- 
ing. Prec. IEEE 68, 9 (Sept. 1980), 1144-1157. 

19. Curtis, B. Substantiating programmer variability. Prec. IEEE 69, 7 
(July 1981), 846. 

20. Curtis, B. Human Factors in Software Development. 2d ed. IEEE Com- 
puter Society, Wash., D.C., 1985. 

21. Curtis, B., Sheppard, S.B., Kruesi-Bailey, E., Bailey, J., and Boehm- 
Davis, D. Experimental evaluation of software documentation for- 
mats. J. Syst. Soflw. In press. 

22. Curtis, B., Soloway, E., Brooks, R., Black, J., Ehrlich, K., and Ramsey, 
H.R. Software psychology: The need for an interdisciplinary pro- 
gram. Prec. IEEE 74, 8 (Aug. 1986}, 1092-1106. 

23. Dailey, R.C. The role of team and task characteristics in R&D team 
collaborative problem solving and productivity. Manage. Sci. 24, 15 
(Nov. 1978), 1579-1588. 

24. DeMarco, T., and Lister, T.A. Peopleware. Dorset, New York, 1987. 
25. Fenlason, A.F, Fergnson, G.B., and Abrahamson, A.C. Essentials in 

Interviewing. Harper & Row, New York, 1962. 
26. Fischer, B.A. Small Group Decision-Making. 2d ed. McGraw-Hill, New 

York, 1980. 
27. Fox, J.M. Software and Its Development. Prentice-Hall, Englewood 

Cliffs, N.J., 1982. 
28. French, J.R.P., and Raven, B. The bases of social power. In Studies in 

Social Power, Ed. D. Cartwright, Institute for Social Research, Ann 
Arbor, Mich., 1959, pp. 150-167. 

20. Gould, I.D., and Lewis, C. Designing for usability: Key principles and 
what designers think. Commun. ACM 28, 3 (Mar. 1985), 300-311. 

30. Guinan, P.J., and Bostrom, R.P. Communication Behaviors of Highly- 
Rated Versus Lowly-Rated System Developers: A Field Experiment. The 
Institute for Resesrch on the Management of Information Systems, 
Indiana Univ., 1987. 

31. Guindon, R., and Curtis, B. Control of cognitive processes during 
design: What tools would support software designers? In Conference 
Proceedings of CHI'88, (Washington, D.C., May 1988}. ACM, New 
York, 1988, 263-268. 

32. Guindon, R., Krasner, H., and Curtis, B. Breakdowns and processes 
during the early activities of software design by professionals. In 
Empirical Studies of Programmers: Second Workshop, Ed. G. Olsen, et 
el., Ablex, Norwood, N.J., (1987), 65-82. 

33. Hastie, R. Experimental evidence on group accuracy. In Information 
Processing and Group Decision-Making, Ed. G. Owen, and B. Grofman. 
JAI Press, Westport, Conn., 1987, 129-157. 

34. Jeffries, R., Turner, A.A., Poison, P.G., and Atwood, M.E. The pro- 
cesses involved in designing software. In Cognitive Skills and Their 

1286 Communications of the ACM November 1988 Volume 31 Number 11 



Computing Practices 

Acquisition, Ed. J.R. Anderson. Erlbaum, Hillsdale, N.J., 1981, pp. 
255-283. 

35. Jones, T.C. The limits to programmer productivity. In Proceedings of 
the Joint SHARE/GUIDE/IBM Applications Symposium, SHARE/ 
GUIDE, Chicago, (1979), pp. 77-82. 

36. Kant, E., and Newell, A. Problem solving techniques for the design 
of algorithms, lnfo. Process. Manage. 28, 1 (Jan. 1984), 97-118. 

37. Kernaghan, J. A., and Cooke, R.A. The contribution of the group 
process to successful group planning in R&D settings. IEEE Trans. 
Eng. Manage. 33, 3 (Mar. 1986), 134-140. 

38. Kincaid, H.V., and Bright, M. The tandem interview: A trial of the 
two-interviewer team. Public Opin. Q. 21, (1957), 304-312. 

39. Klatzky, R.L. Human Memory: Structures and Processes. San Francisco, 
W.H. Freeman, 1975. 

40. Kling, R. The web of computing: Computer technology as social 
organization. Vol. 21, Adv. Comput. Addison-Wesley, Reading, Mass., 
1982, pp. 1-90. 

41. Magnusson, D. Toward a Psychology of Situations: An Interactionist 
Perspective. Erlbaum, Hillsdale, N.J., 1981. 

42. Malhotra, A., Thomas, J.C., Carroll, J.M., and Miller, L.A. Cognitive 
processes in design. Int. ]. Man-Machine Stud. 12, (1980}, 119-140. 

43. McGarry, F.E. What have we learned in the last six years? In 
Proceedings of the Seventh Annual Software Engineering Workshop 
(Greenbelt, Md., Dec. 1982}, NASA-GSFC, Greenbelt, Md., 1982. 

44. Mills, J.A. A pragmatic view of the system architect. Commun. ACM 
28, 7 (July 1985), 708-717. 

45. Moos, R.H., and Insel, P.M. Issues in Social Ecology: Human Milieus. 
National Press Books, Pale Alto, Calif., 1974. 

46. Myers, W. MCC: Planning the revolution in software. IEEE Soflw. 2, 
6 (Nov. 1985), 68-73. 

47. Newell, A. Heuristic programming: Ill structured problems. Vol. 3, In 
Prog. Oper. Res., Ed. J. Aronofsky. Wiley, New York, 1969, pp. 360- 
414. 

48. Rich, C., and Waters, R.C. Automatic programming: Myths and pros- 
pects. IEEE Comput. 21, 8 (Aug. 1988), 40-51. 

49. Rittel, H.W.J., and Webber, M.M. Dilemmas in a general theory of 
planning. Policy Sci. 4, 1973, 155-169. 

50. Rogers, E.M., and Kincaid, D.L. Communication Networks: Toward a 
New Paradigm for Research. Free Press, New York, 1981. 

51, Scacchi, W. Managing software engineering projects: A social analy- 
sis. IEEE Trans, Softw. Eng. 10, 1 (Jan. 1984), 49-59. 

52, Sells, S.B. An interactionist looks at the environment. Am. Psychol. 
18, 11 {Nov. 1963}, 696-702. 

53, Sells, S.B. Ecology and the science of psychology. Multivariate Behav. 
Res. 1, 2 (Feb. 1966), 131-144. 

54. Swanson, E.B., and Beath, C.M. The use of case study data in soft- 
ware management research. J. Syst. Softw. 8, 1 (Jan. 1988), 63-71. 

55. Thamhain, H.J., and Wilemon, D.L. Building high performance engi- 
neering project teams. IEEE Trans. Eng. Manage. 34, 3 (Mar. 1967), 
130-137. 

56. Tushman, M.L. Special boundary roles in the innovation process. 
Adm. Sci. Q. 22, 4 (Winter 1977}, 587-605. 

57. Vosburgh, J., Curtis, B., Wolverton, R., Albert, B., Malec, H., Hoben, 
S., and Liu, Y. Productivity factors and programming environments. 
In Proceedings of the Seventh International Conference on Software Engi- 
neering (Orlando, Fla., Mar. 1984}. IEEE Comput. Soc., Washington, 
D.C., 1984, pp. 143-152. 

58. Walston, C.E., and Felix, C.P. A method of programming measure- 
ment and estimation. IBM Syst. ]. 16, 1 (Jan. 1077}, 54-73. 

59. Walz, D., Elam, D., Krasner, H., and Curtis, B. A methodology for 
studying software design teams: An investigation of conflict behav- 
iors in the requirements definition phase. In Empirical Studies of 
Programmers: Second Workshop, Ed. G. Olsen, et al. Ablex, Norwood, 
N.J., 1987, pp. 83-99. 

60. Warwick, D.P., and Lininger, C.A. The Sample Survey: Theory and 
Practice. McGraw-Hill, New York, 1975. 

61. Weinberg, G.M. The Psychology of Computer Programming. Van Nos- 
trand Reinhold, New York, 1971. 

62. Whyte, W.F. Interviewing in field research. In Human Organization 
Research, Eds. R.N. Adams and J.J. Priess. 1960. 

63. Zelkowitz, M., Yeh, R., Hamlet, R., Gannon, J., and Basili, V. Soft- 
ware engineering practices in the U.S. and Japan. IEEE Comput. 17, 6 
(June 1984), 57-66. 

CR Categories and Subject Descriptors: D.2.9 [Software Engineer- 
ing]: Management; D.2.10 [Software Engineering]: Design; D.m [Miscel- 
laneous]--software psychology; J.7 [Computers in Other Systems]; K.1 
[The Computer Industry]; K.6.1 [Management of Computing and Infor- 
mation Systems]: Project and People Management; K.7.2 [The Comput- 
ing Profession]: Organizations 

General Terms: Software Management, Systems Design 
Additional Key Words and Phrases: Case studies, domain knowl- 

edge, empirical studies of software development, large systems design, 
layered behavioral model, project communications, system require- 
ments 

ABOUT THE AUTHORS: 

BILL CURTIS is a director in MCC's Software Technology 
Program where  he has directed research on software process 
modeling and coordination, software design methods and tools, 
computer  supported cooperative work, intelligent user inter- 
faces, and empirical studies of software development. He is 
also an Adjunct Associate Professor in the Department of Man- 
agement Science and Information Systems at the University of 
Texas. Present address: Micraelectronics and Computer Tech- 
nology Corp., P.O. Box 200195, Austin TX 78720. 

HERB KRASNER manages the Software Process Research 
Group in Lockheed's Software Technology Center. He has ex- 
perience in large systems development, industrial/academic 
research, and university teaching. His current  research inter- 
ests include: A1 applied to software engineering, design team- 
ware, process modeling and evaluation, decision-based design 
methods, and empirical studies. Present address: Lockheed 
Research Division, Organization 9601, Building 30E, 2100 East 
Elmo, Austin, TX 78744. 

NEIL ISCOE is currently completing his Ph.D. in the Depart- 
ment  of Computer  Sciences at the University of Texas at Aus- 
tin. His research interests include domain modeling and analy- 
sis, object-oriented design, and program generation. Prior to his 
work in the MCC field study, he served as president of a soft- 
ware development and consulting firm called Statcom Corpo- 
ration. Present address: Department of Computer  Sciences, 
University of Texas, Austin, TX 78712. 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct commer- 
cial advantage, the ACM copyright notice and the title of the publication 
and its date appear, and notice is given that copying is by permission of 
the Association for Computing Machinery. To copy otherwise, or to 
republish, requires a fee and/or specific permission. 

November 1988 Volume 31 Number 11 Communications of the ACM 1287 


