
COMPUTING PRACTICES

The problems of designing large software systems were studied through
interviewing personnel from 17 large projects. A layered behavioral model is
used to analyze how three of these problems--the thin spread of application
domain knowledge, fluctuating and conflicting requirements, and
communication bottlenecks and breakdowns--affected software productivity
and quality through their impact on cognitive, social, and organizational
processes.

A FIELD STUDY OF THE SOFTWARE DESIGN
PROCESS FOR LARGE SYSTEMS

BILL CURTIS, HERB KRASNER, and NElL ISCOE

THE NEED FOR ECOLOGICAL DATA IN
TECHNOLOGY RESEARCH
MCC, The Microelectronics and Computer Technology
Corporation, is a research consortium whose Software
Technology Program was tasked by its member compa-
nies to create technology that dramatically improves
software productivity and quality. This program has
focused its research on the upstream portion of the
software development process, since the empirical liter-
ature suggests that requirements and design decisions
exert tremendous impact on software productivity,
quality, and costs throughout the life cycle [35]. From
the beginning, the program was committed to problem-
driven, rather than technology-driven, research [46]. To
pursue problem-driven research, an empirical studies
group was established to assess the upstream factors in
our member companies' development environments
that reduced software productivity and quality.

Some members of our team have been proponents of
quantitative and experimental methods in software
engineering research [18, 20-22]. We judged these
methods insufficient, however, for providing insight
into our member companies' problems early enough to

© 1988 ACM 0001-0782/88/1100-1268 $1.50

support a large, focused technology research program.
Accordingly, we employed field research methods char-
acteristic of sociology and anthropology [12]. The need
for expedient results dictated the short, intensive study
of a broad cross-section of projects, rather than the lon-
gitudinal study of a single project. In a similar field
study, Zelkowitz, Yeh, Hamlet, Gannon, and Basili [63]
identified discrepancies between the state of the art
and the state of practice in using software engineer-
ing tools and methods. The data we collected lend
themselves to creating the case studies often recom-
mended for use in research on software development
projects [8, 54].

This field study of the software design process con-
sisted of interviews with personnel on large system de-
velopment projects. The interviews revealed each proj-
ect's design activities from the perspectives of those
whose actions constituted the process. Our inter-
views provided detailed descriptions of development
problems to help identify high-leverage factors for
improving such processes as problem formulation,
requirements definition and analysis, and software
architectural design. We focused on how requirements
and design decisions were made, represented, commu-
nicated, and changed, as well as how these decisions
impacted subsequent development processes.

1268 Communications of the ACM November 1988 Volume 31 Number 11

Computing Practices

A LAYERED BEHAVIORAL MODEL OF
SOFTWARE DEVELOPMENT PROCESSES
Studies by Walston and Felix [58], Boehm [9, 10],
McGarry [43], and Vosburgh, Curtis, Wolverton, Albert,
Malec, Hoben, and Liu [57] have demonstrated the sub-
stantial impact of behavioral (i.e, human and organi-
zational) factors on software productivity. The effects of
tools and methods were relatively small in these stud-
ies. For instance, rather than the sizable gains often
promised, Card, McGarry, and Page [16] found that ap-
plying a collection of software engineering technologies
to actual projects had only a 30 percent impact on relia-
bility and none on productivity. To create software
development technology that dramatically improves
project outcomes, Weinberg [61], Scacchi [51], and
DeMarco and Lister [24] argue that we must under-
stand how human and organizational factors affect the
execution of software development tasks. Nevertheless,
Weinberg warned that "the idea of the programmer as a
human being is not going to appeal to certain types of
people" [61 p. 279].

For instance, software design is often described as a
problem-solving activity. Nevertheless, few software de-
velopment models include process components identi-
fied in empirical research on design problem-solving
[2, 31, 32, 34, 36, 42]. Even worse, software tools and
practices conceived to aid individual activities often
do not provide benefits that scale up on large projects
to overcome the impact of team and organizational
factors that affect the design process.

Our study differs from the quantitative studies we
cited earlier by describing the processes and mecha-
nisms through which productivity and quality factors
operate, rather than developing a quantitative assess-
ment of their impact. These descriptions support our
need to understand how different tools, methods, prac-
tices, and other factors actually affect the processes that
control software productivity and quality. Since large
software systems are still generated by humans rather
than machines, their creation must be analyzed as a
behavioral process. In fact, software development should

Y • •

Content of analysis ~ Cognition & Group Organizational
Motivation Dynamics Behavior

FIGURE 1. The layered behavioral model of software
development,

be studied at several behavioral leveis [40], as indicated
in the layered behavioral model presented in Figure 1.
This model emphasizes factors that affect psychological,
social, and organizational processes, in order to clarify
how they subsequently affect productivity and quality.

The layered behavioral model focuses on the behav-
ior of those creating the artifact, rather than on the
evolutionary behavior of the artifact through its devel-
opmental stages. At the individual level, software de-
velopment is analyzed as an intellectual task subject to
the effects of cognitive and motivational processes.
When the development task exceeds the capacity of a
single software engineer, a team is convened and social
processes interact with cognitive and motivational
processes in performing technical work. In larger proj-
ects, several teams must integrate their work on differ-
ent parts of the system, and interteam group dynamics
are added on top of intrateam group dynamics. Projects
must be aligned with company goals and are affected
by corporate politics, culture, and procedures. Thus, a
project's behavior must be interpreted within the con-
text of its corporate environment. Interaction with
other corporations either as co-contractors or as cus-
tomers introduces external influences from the busi-
ness milieu. These cumulative effects can be repre-
sented in the layered behavioral model. The size and
structure of the project determines how much influ-
ence each layer has on the development process.

The layered behavioral model is an abstraction for
organizing the behavioral analysis of large software
projects. It encourages thinking about a software proj-
ect as a system with multiple levels of analysis. This
model does not replace traditional process models of
software development, but rather organizes supplemen-
tary process analyses. This model is orthogonal to tradi-
tional process models by presenting a cross-section of
the behavior on a project during any selected develop-
ment phase. Describing how software development
problems affect processes at different behavioral levels
indicates how these problems ripple through a project
[51]. The layered behavioral model encourages
researchers to extend their evaluation of software
engineering practices from individuals to teams and
projects, to determine if the aggregate individual
level impacts scale-up to an impact on programming-
in-the-large.

SAMPLE AND ANALYSIS
Sample and Study Procedures
Candidate projects were identified by each company's
liaison to the MCC Software Technology Program in
conjunction with company management. These indus-
tries were in businesses such as computer manufactur-
ing, telecommunications, consumer electronics, and
aerospace. Originally, we wanted to study projects that:

* involved at least 10 people
• were past the design phase but not yet delivered
• involved real-time, distributed, or embedded

applications

November 1988 Volume 31 Number 11 Communications of the ACM 1269

Computing Practices

Most projects selected conformed to some, but not all,
of these criteria, and the deviations provided a richer
set of project types to study. Rather than provide only
successful projects, companies were willing to let us
interview a project that had been terminated and sev-
eral others that had been resurrected from failures.
Nevertheless, we make no claim that this is a random
sample.

From May through August, 1986, we visited 19 proj-
ects from nine companies. Two projects were actually
programming teams embedded in larger projects and
were dropped from this analysis. Prior to each site visit
the project manager had completed a brief form de-
scribing project characteristics, and these are summa-
rized in Table I. These projects varied in the:

Although all interviews were recorded, we offered to
turn off the tape recorder any time the participant
wished. One participant requested that the interview
not be recorded, and several others requested that the
recorder be turned off briefly while describing supervi-
sors. Several participants, most often senior system en-
gineers, requested that their tapes be played for senior
management. Tape recordings of the 97 interviews
yielded more than 3,000 pages of transcripts.

Analysis of the Interviews
Analysis of the interview transcripts revealed the pro-
cesses that underlie a number of classic software devel-
opment problems. We took a two-pronged approach in
our analysis. In a top-down approach, we built models

1 Terminated - -
2 Development 24 P"
3 Development 50
4 Development 50 v-
5 Design 70
6 Development 130
7 Development 150+
8 Maintenance 194
9 Development 200

10 Maintenance 250
11 Development 350+
12 Maintenance 400
13 Design 500
14 Maintenance 725
15 Development 1000 v ~
16 Maintenance 50K+ v"
17 Requirements 100K v-

TABLE I. Charactedstics of the 17 Field Study Projects

Application

Suppor t Sof tware
, t Radio Control

v, ~ Process Control
Operating System

P" CAD
CAD

v" ~ Avionics
C 3

Compiler
Run-time Library

Compiler
Transaction Proc.

v- Telephony
Operating System

v" Telephony
v" ~ ~ Radar, C 3

v" ~ C 3, Life Suppor t

• stage of development (early requirements definition
through maintenance)

• size of the delivered system (24K to an estimated
100M lines of code)

• application domain (operating systems; transaction
processing; communications, command, and control
[C3]; avionics)

• key project/system attributes (e.g., real-time, distrib-
uted, embedded, and defense)

We conducted structured interviews approximately
one hour long on site with systems engineers, senior
software designers, and the project manager. On about
one-third of the projects, we were able to interview the
division general manager, customer representatives,
and the testing or quality assurance team leader. Parti-
cipants were guaranteed anonymity, and the informa-
tion reported has been sanitized so that no individual
person, project, or company can be identified. The
methods we used in creating questions and conducting
these interviews with participants are described in
Appendix A, along with a discussion of salient meth-
odological issues regarding interview data.

of the important processes described in the interviews.
In a bottom-up approach, using projects that presented
particularly crisp case studies, we wrote summaries of
process-related issues from individual interviews and
then synthesized summaries for the project. We clus-
tered the problems into several areas we heard repeat-
edly across different projects. The three most salient
problems, in terms of the additional effort or mistakes
attributed to them, were:

(1) the thin spread of application domain knowledge
(2) fluctuating and conflicting requirements
(3) communication and coordination breakdowns

We distinguished among these three problems be-
cause they operate through different mechanisms and
may require different solutions. Each problem typically
emerged from processes at one level of the layered be-
havioral model, but affected processes at several levels.
For instance, the thin spread of application knowledge
was a cognitive issue, while fluctuating requirements
normally resulted from conditions in the business
milieu. Communication breakdowns, however, could

1270 Communications of the ACM November 1988 Volume 31 Number 11

Computing Practices

occur at any process level. The effects of these prob-
lems were not independent. For instance, fluctuating
requirements increased a development team's
need for communication both with customers and
with the project's other teams.

A section on each problem will begin with discussion
at the behavioral level whose processes formed the
problem's primary mechanism. We will then describe
how it rippled through a software project by affecting
processes at other levels. We will illustrate these de-
scriptions with sanitized quotes from the field study
transcripts.

THE THIN SPREAD OF APPLICATION DOMAIN
KNOWLEDGE
The deep application-specific knowledge required to
successfully build most large, complex systems was
thinly spread through many software development
staffs. Although individual staff members understood
different components of the application, the deep
integration of various knowledge domains required to
integrate the design of a large, complex system was a
scarcer attribute. This problem was especially charac-
teristic of projects where software was embedded in a
larger system (e.g., avionics or telephony), or where the
software implemented a specific application function
(e.g., transaction processing}. These systems contrast
with applications currently taught in computer science
departments, like single processor operating systems
and compilers. Although most software developers
were knowledgeable in the computational structures
and techniques of computer science, many began their
career as novices in the application domains that con-
stituted their company's business. As a result, software
development required a substantial time commitment
to learning the application domain.

System engineer: Writing code isn't the problem,
understanding the problem is the problem.

Many forms of information had to be integrated to
understand an application domain. For instance, project
members had to learn how the system would behave
under extreme conditions such as a jet fighter entering
battle at night during bad weather, a telephone switch
undergoing peak load on Mother's Day, or an automated
factory with machines running at different speeds. Soft-
ware developers had to learn and integrate knowledge
about diverse areas such as the capabilities of the total
system, the architecture of a special-purpose embedded
computer (often a microprocessor), application-specific
algorithms, the structure of the data to be processed
and how it reflected the structure of objects and pro-
cesses in the application domain, and occasionally even
more esoteric knowledge about how different users per-
formed specific tasks.

Individual Level
Project managers and division vice presidents consis-
tently commented on how differences in individual
talents and skills affected project performance. These

observations were consistent with earlier differences
observed in software productivity studies [9, 19, 43].
Individual performance is a combination of motivation,
aptitude, and experience; where experience often con-
sists of disorganized education acquired on-the-job.

Some performance differences were determined by
how deeply programmers understood the application
for which they were writing programs. Specification
mistakes often occurred when designers did not have
sufficient application knowledge to interpret the cus-
tomer's intentions from the requirements statement.
Customer representatives and system engineers com-
plained that implementations had to be changed
because development teams had misconceptions of the
application domain.

Customer representative: They didn't have
enough people who understood warfare to assess
what a war actually meant. When we say we're
going to use this system t o . . . search areas
[they] thought you do it with a fixed geometric
method. Whereas I had to explain you don't it's
always relative to the kind of force you are protect-
ing. Suddenly, that becomes a whole different
problem.

Many projects had one or two people, usually senior
system engineers, who assumed prime responsibility for
designing the system. On about one-third of the proj-
ects we studied, one of these individuals had remark-
able control over project direction and outcome, and in
some cases was described by others as the person who
"saved" the system. Since their superior application do-
main knowledge contrasted with that of their develop-
ment colleagues, truly exceptional designers stood out in
this study, as they have elsewhere [15, 17], as a scarce
project resource. Thus, the unevenness with which
application-specific knowledge was spread across pro-
ject personnel was a major contributor to the phenom-
ena of project gurus. Although our primary orientation
in the field study had been to study organizational
processes, we could not escape the impact of these dif-
ferences in individual design talent.

Exceptional designers performed broader roles than
design [44], and were recognized as the intellectual
core of the project (i.e., the keeper of the project vision)
by other project members. As part of this central role,
exceptional designers provided us with the richest in-
sight into the design process. Their understanding of
both customers and developers allowed them to inte-
grate different, sometimes competing, perspectives on
the development process.

System engineer: The people that seem to be
really gifted at this sometimes seem to have . . , an
understanding of the market voice--even though
they're not always in touch with the customer--
and can understand what makes sense Lots of
what we work with is a hundred million ordinary
people out there. I sort of relate to them and how
they'll react.

November 1988 Volume 31 Number 11 Communications of the ACM 1271

Computing Practices

Three characteristics appeared to set exceptional de-
signers apart from their colleagues. First, exceptional
designers were extremely familiar with the application
domain. Their crucial contribution was their ability to
map between the behavior required of the application
system and the computational structures that imple-
mented this behavior, shown in Figure 2. In particular,
they envisioned how the design would generate the
system behavior customers expected, even under ex-
ceptional circumstances. Yet exceptional designers
often admitted that they were not good programmers,
indicating they did not write optimized code, if they
wrote code at all.

Mapping

Application Computational
knowledge knowledge

FIGURE 2. The expertise of exceptional designers.

Exceptional designers were often described as inter-
disciplinary, since they integrated several knowledge
domains that constituted the application domain. The
volume of application domain knowledge and lack of
good domain models are serious obstacles in current
automatic programming systems [6]. For large em-
bedded systems these problems are complicated by the
number of domains that must be integrated. For in-
stance, designing military avionics software might re-
quire expertise in flight control, navigation, sensor-data
processing, electronic countermeasures, and target
acquisition.

System engineer: It is one of the underlying main
problems not having enough of the system-
level thinkers . . , to coordinate the thinking of the
people who don't think on a system level There
aren't enough system-level thinkers to go around,
even to do the quotes It's what people are pay-
ing attention to, what are their hot-buttons. You
get the bit bangers who are only interested about
bits [Systems thinkers] are not looking at the
computer as the end-all and be-all of the problem.
It's just one more of the objects that they have to
deal with.

Although a project might have experts in each of its
functional domains, these experts were often unable to
model the effect of component integration on process-
ing or storage constraints. Exceptional designers were
skilled at modeling the interaction of a system's differ-
ent functional components, and occasionally developed
notations for representing them. Exceptional designers
were also adept at identifying unstated requirements,
constraints, or exception conditions.

System engineer: One of the things I do best is
model the real world within our database and
we always have the same problem, "This is what
you want to model? Well, you've got this little
hickey they didn't tell you about.". . . Most people
cannot model it just requires an ability to
abstract.

Second, exceptional designers were skilled at com-
municating their technical vision to other project mem-
bers. They usually possessed exceptional communica-
tion skills [30] and often spent much of their time
educating others about the application domain and its
mapping into computational structures. In fact, much of
their design work was accomplished while interacting
with others. Weinberg suggests that the integrative role
of an exceptional designer compounds itself. This hap-
pens because those perceived as most knowledgeable
will become communication focal points, providing
them more knowledge about the system to integrate
into a more comprehensive model.

Third, exceptional designers usually became con-
sumed with the performance of their projects. They
were a primary source of coordination among project
members and assumed, without formal recognition,
many management responsibilities for ensuring techni-
cal progress. They frequently internalized the pressures
of the project because of their identification with its
success. Although not part of our original focus, we
became sensitive to the health risks of stress on crucial
project personnel and the business risks that can result.

Conventional wisdom on software development often
argues that no software project should rely on the per-
formance of a few individuals. The experience of many
successful large projects, however, indicates why this
reliance is more troublesome in theory than in practice.
An exceptional designer represents a crucial depth and
integration of knowledge domains that are arduous to
attain through a group design process. Under severe
schedule constraints, groups may be unable to achieve
the level of knowledge integration required to develop
a cohesive architecture and design strategy [14].

Broad application knowledge was acquired more
through relevant experience than through training,
since little training was provided for integrating techni-
cal domains. Developing design skill required the right
project assignments, since some large system develop-
ment lessons could not be acquired through classroom
instruction or on small projects. Thus, the substantial
cost of developing talented large system designers is
part of the cost of developing large systems.

System engineer: Someone had to spend a
hundred million to put that knowledge in my head.
It didn't come flee.

Team Level
Although the thin spread of application domain knowl-
edge is a cognitive issue, it had impact on processes,
such as decision-making, occurring at the team level

1272 Communications of the ACM November 1988 Volume 31 Number 11

Computing Practices

and above. Owing to the broad skill ranges on design
teams, expert power [28], meaning the ability to influ-
ence a group through superior knowledge, appeared
to be the most effective means of exercising author-
ity during many parts of the design process. Group
decision-making researchers have generally not studied
teams on long duration activities like system design,
where the quality of the result is difficult to measure
[26, 33]. Therefore, theoretical models of group
decision-making may not describe the behavior of
large system design teams.

If we were to construct a simple participative,
consensus-oriented model of the team design process,
we might begin with team members holding their own,
often partial, models of the system's structure. These
individual models usually differ in their representation
of factors such as the application system's external be-
havior, the environmental context in which it will op-
erate, or the most appropriate computational model. In
the second stage, individuals sharing similar models
would form coali t ions to argue for their architectural
position. In the final stage, the technical differences
between coalitions would be resolved into a team con-

sensus . Belady [7] observed similar processes within
Japanese design teams.

Stage 3:
TEAM
CONSENSU:

Stage 2:
COALITION
FORMATIOI~

Stage 1:
INDIVIDUAL
MODELS

FIGURE 3. Small coalitions often coopt the design process.

In contrast to the model just outlined, the early
phases of most projects in our study were dominated by
a small coalition of individuals, occasionally even a sin-
gle individual (the exceptional designer) who took con-
trol of the project's direction. Members of the dominant
coalition usually knew most about the application, or
had previous experience that made them quick studies.
When all team members were from the same corporate
division, competing coalitions were reported much less
often than we had expected. As Figure 3 shows, com-
peting coalitions were difficult to form because a domi-
nant coalition's speed in formulating a design made
catch-up by late-forming coalitions difficult. Further,
alternatives were usually debated in terms of the archi-
tectural foundation already proposed.

System engineer: I tried an experiment last
summer and said, "What would happen if I just
sort of was agreeable to a certain extent with [a
colleague]." Ever noticed in a meeting where

there's 15 people and there's 15 points of view, a
majority is only two. Two people say the same
thing and everything moves forward I think we
pulled off an incredible project in a very short time
by that relationship. He lets me win sometimes and
I let him win sometimes, and the game goes on.

Competing coalitions occurred m o r e often on teams
formed with representatives from several different com-
panies. For single company projects, competing coali-
tions formed primarily when the design team consisted
of members from different organizational divisions.
Coalitions based on organizational allegiances often
resulted from differences in each organization's model
of the application (discussed under Business Milieu).

These observations do not imply that teams are un-
important during design. Videotaped observations of a
design team in our laboratory [59] suggested that teams
composed of members from different technical areas
were better at exploring design decisions in breadth,
rather than depth, by posing alternatives and con-
straints and by challenging assumptions. Thus, design
directions set by a small coalition may benefit when
challenged by colleagues who may never gather enough
support to form a coalition. Forming a competing coali-
tion requires considerable effort to generate support for
an alternate proposal among colleagues. Rather than
being only a matter of technical argumentation, form-
ing an alternate coalition requires a social process of
mobilizing support.

Project Level
When application knowledge was thinly spread, it was
necessary to ensure that the design and development
teams shared a model of the system's operation. A sys-
tem model is actually an integrated collection of
models. One potential set of relationships among com-
ponents of a system model for a hypothetical project is
illustrated in Figure 4. The relevant components and
their r e l a t i o n s h i p s may vary by system. Most project
personnel were knowledgeable in one or two of the
areas represented by circles in the diagram. Those who
focused on the system architecture, however, were best
positioned to integrate application and computational

FIGURE 4. Knowledge domains involved in system building.

November 1988 Volume 31 Number 11 Communications of the ACM 1273

Computing Practices

knowledge, and to oversee the functional integration of
the design. System engineers used many methods to
integrate a project, ranging from gentle persuasion to
aggressive steamrolling.

System engineer: We create a project manage-
ment group with about five or six people that can
do anything. When somebody's not doing some-
thing, we roll in there and start doing it and get it
structured just the way we want it. Then they get
mad and say, "It's our job," but by then it's all
structured and we back out and throw our re-
sources somewhere else, and get something else
going just the way we want it.

The time devoted to learning and coordinating
application-specific information was initially buried
within the design phase and could not be accounted for
separately. Learning costs were paid for in several
ways: in planned training, in exposure to customers, in
prototypes and simulations, in defects, in budget or
schedule overruns, and in canceled projects. Customers
were usually unwilling to pay for training since they
believed the contractor should already have the re-
quired knowledge. Thus, the time required for design
was often seriously underestimated, since these esti-
mates were usually based only on the time actually
spent designing. The time spent educating project per-
sonnel about the application domain and coordinating
their understanding of the system was overlooked.

We were tempted to conclude that the best prototype
was a failed effort. We interviewed several highly pro-
ductive projects that had emerged from the ashes of
failed architectures, and heard several citations of
Brooks' [14] admonition to "plan to throw one away."
These phoenix projects occurred when exceptional de-
signers had immersed themselves in enough of the
application and computational problems of their archi-
tecture to recast their vision of the system. A rapidly
developed prototype that missed the problems uncov-
ered in an unsuccessful architecture would not have
provided the required insight. To be effective, proto-
types must be sufficiently comprehensive for misunder-
stood requirements or subtle system problems to pre-
sent themselves.

Company Level
The cost of learning an application area was a signifi-
cant corporate expense. The time estimated for a new
project assignee to become productive ranged from six
months to a year. Major changes in the business appli-
cation or in the underlying technology required addi-
tional learning. As the technical staff's application
knowledge matured, however, the organization usually
increased its ability to reduce project cost and sched-
ule, and increase productivity and quality.

System engineer: If you look at the evolution of
this place. . , over the course of three or four
years--at the beginning the most important thing

you could b e . . . as an engineer was somebody
who knew the operating system internals. We're
now making the transition to the most important
th ing. . , is understanding the application. That's
really where our bread and butter is. For a long
time we could never keep engineers focused on
what they were supposed to be doing here.

Companies were affected by the migration of techni-
cal talent into management and by whether manage-
ment decisions were based on current knowledge of
technical issues. If a business' software applications and
related technology were stable, a manager's previous
technical experience provided an adequate basis for de-
cisions. However, major changes eroded the value of a
manager's technical knowledge for making decisions,
especially those that involved technical tradeoffs. Some
managers were frequently unable to participate in the
technical meetings (e.g., requirements analysis, design
reviews) that provided training for their project team.
The contribution of previous technical knowledge grew
more remote as managers were promoted beyond first
line management.

Although most managers had developed progress
tracking schemes, many were less aware of system sta-
tus than were their system engineers. On extremely
large projects, middle managers expressed frustration at
being removed both from the technical decisions made
by engineers and from the strategic decisions made by
executives. Some software managers had difficulty ar-
ticulating their role in the project and had no company
source for advice or training on better development
tools and practices.

Programmer: The way the managers are getting
trained is that the engineers are coming back [from
software engineering courses] and are fighting to
keep using some of the tools and techniques
they've learned; and fighting against the managers
to let them use them; and that's really how the
managers are getting their experience.

A major challenge to most managers was to assess
the limits of their staff's capability and its impact on
producing a successful system. An implicit component
of their job was to close the gap between the technical
challenges of the system and their staff's capability for
solving them. They also had to assess the claims made
by staff members about their own abilities and about
how long it would take them to perform a task.

Business Milieu
When several companies cooperated in building a
system, the separation imposed by organizational
boundaries hindered their shared understanding of the
application and the system architecture. Competing co-
alitions in multicompany design teams formed along
company boundaries and clashed over assumptions
about market applications or system functionality that
were unique to their business or product lines. These

1~74 Communications of the ACM November 1988 Volume 31 Number 11

Computing Practices

differences frequently caused co-contractors to try to
push the hard problems into each other 's component as
they negotiated the requirements and specifications.

System engineer: You . . . minimized your own
problems and maximized theirs. What it boiled
down to w a s . . , a big finger pointing contest.

The coordination process was more complicated on
mult icompany projects than on single company proj-
ects, because each company understood the application
domain in the context of its own product lines. Soft-
ware contractors often took responsibili ty for coordinat-
ing design decisions because they had to architect the
system's behavior. Technical coordination required a
long dialectic among co-contractors both for surfacing
assumptions and for resolving misunderstandings.

System engineer: We had three different simula-
tors all coming up with different answers None
of them reflected the same reali ty because they
were all using their own preconceived notions
The human factor definitely played a role We
spent many a day in trying to figure out what the
assumptions were of the three different simula-
tions, saying, "No, you can' t do it that way, go back
and do it this way."

Customers often believed that the software contrac-
tor should be the prime contractor for a system since
the software team had the greatest need to understand
the details of the customer 's application environment.
Yet the software contract might involve as little as one-
tenth of the total project cost, since the largest cost
involved building mult iple versions of the hardware.
Software contractors were unwill ing to assume the fi-
nancial risk of the total project when they received
such a small percent of the contract 's value. Forcing the
customer and the software designer to communicate
through the hardware contractor l imited the software
team's abili ty to learn about the application domain.
It also hindered the customer 's abili ty to negotiate
small, but necessary, corrections to the software
requirements.

Application Domain Knowledge Summary
Our interviews revealed that the thin spread of applica-
tion knowledge among the project staff was a signifi-
cant problem on many software development projects.
This problem init ially manifested itself at the individ-
ual level and under lay the phenomenon of the project
guru, an exceptional designer who could map deep ap-
plication knowledge into a computational architecture.
Those with this skill exerted extraordinary influence
over the direction of the design team, and the forma-
tion of effective coalitions supporting alternate propos-
als happened less often than expected. Substantial
design effort was spent coordinating a common under-
standing among the staff of both the application do-
main and of how the system should perform within it.

Periodic changes in the application domain or in the
supporting technology reduced a company's technical
matur i ty and weakened its foundation for sound man-
agement decisions. Mult icompany development efforts
had to overcome company-specific models of the appli-
cation domain and their translation into system func-
tionality. Aggregating these issues across behavioral
levels points to the importance of managing learning,
especially of the application domain, as a major factor
in productivity, quality, and costs.

FLUCTUATING AND CONFLICTING
REQUIREMENTS
Fluctuation or conflict among system requirements
caused problems on every large project we interviewed.
For example, we visited one gargantuan system that
was being acquired in separate components, each in-
volving competit ive bidding among corporations. On
the day we interviewed the proposal team, the cus-
tomer announced a real ignment of functional compo-
nents across different bidding competitions. We found
team members gathered around a newspaper clipping
and other, more official postings on the bulletin board,
in an at tempt to determine which of their designed
artifacts could still be included in their proposal. On
another project, we were told that hardware changes
could cause a redesign of the software every six
months.

Market Impacts

Customers
Customized needs
Changing needs

Add-ons

Technology
Technology advances
CompetEtor's products

Regulation
Regulatory agencies

Company Impacts

Approvals] [Technology

Marketing S Legal I I R & D result,
Financial I i Other product lines

n••l• Hidden Impacts

Implementora
Creeping elegance

Skunkwork=

FIGURE 5. Sources of fluctuating and conflicting requirements.

Requirements will appear to fluctuate when the de-
velopment team lacks application knowledge and per-
forms an incomplete analysis of the requirements. Now
we will concentrate on sources of fluctuation and con-
flict that were external to the design team. A variety of
events caused volatili ty and conflict in product require-
ments, as shown in Figure 5, including such market
factors as technological advances, competit ive products,
regulatory constraints, standards committees, and such
internal company factors as corporate politics, market-
ing plans, research results, and financial conditions.
Less visible within the project were the hidden effects
on the requirements such as skunkworks (work hidden
by managers) and creeping elegance. Since the primary
sources of fluctuating and conflicting requirements
existed in the company and the business milieu, we
begin our discussion at these levels.

November 1988 Volume 31 Number 11 Communications of the ACM 1275

Computing Practices

Business Milieu
Product requirements fluctuated most frequently when
different customers had separate needs or when the
needs of a single customer changed over time. Analyz-
ing requirements for commercial products was difficulL
without an explicit s tatement of at least one customer':~
needs. The requirements were often defined for the
first customer to place an order, even though project
personnel knew that other customers would state dif-
ferent requirements. During development, designers
tried to raise the product specification from the specific
(driven by a single customer} to the general (driven by a
market of customers), although it often continued to
evolve from the specific to the specific.

Software architect: The whole software architec-
ture, to begin with, was designed around one cus-
tomer that was going to buy a couple of thousand
of these. And it wasn ' t really designed around
t h e . . , marketplace at a l l . . A n o t h e r . . , customer
had another need, so we're, trying to rearrange the
software to take care of these two customers. And
when the third one comes along, we do the same
thing. And when the fourth one comes along, we
do the same thing.

Even when a customized system was developed for
one client, the requirements often provided a moving
target for designers. During system development, the
customer, as well as the developer, learned about the
application domain. The dialectic through which the
developer generated the requirements revealed new
possibilities to the customer [29]. As customers learned
more about the system's capabili ty and understood
their application better, they envisioned many features
they wished they had included in the requirements.

Project manager: Planned is probably a generous
term an englightenment occurs as they move
forward.

Many customers misunderstood the tradeoffs be-
tween requested functions, the capabilit ies of existing
technology, the del ivery schedule, and the cost. They
learned of these tradeoffs through an i terative negotia-
tion with the system design team, as the requirements
were translated into a design and costs could be esti-
mated. Each cycle is dr iven by trying to balance and
integrate technical and non-technical constraints into
the product requirements.

System engineer: The original proposal was re-
jected because it was not as all-encompassing as
they had originally perceived [the] system ought to
be. So we made it bigger. Then it was too costly. So
we scaled it down. It went through over 20 ver-
sions. It keeps expanding and contracting until it
cools. It's like the earth.

Customers rarely understood the complexity of the
development process and often requested frequent

changes to the requirements. They underes t imated the
effort required to re-engineer the software, especially
when the system involved tight t iming or storage con-
straints. They rarely understood the impacts that rip-
pled through the software when changes were made
and the coordination required to document and test
these changes. As a result, customers could not under-
stand why changes to the requirements were so costly.

When customers had access to the development
team, they often requested additions to the require-
ments without going through a formal change review
process. Thus, the requirements were often unstable in
ways that were not visible to project management.

Customer representative: We like to be in among
the contractors, assisting where we can, getting
early decisions where necessary, and at the same
time trying to talk them into enhancements we
didn ' t pay for.

Government customers used the requirements state-
ment as the basis for obtaining competit ive bids. They
tried to ensure that all competitors received identical
information, regardless of whether it was in the re-
quirements statement or in answers to questions. Mak-
ing the competi t ion fair to all bidders often clashed
with the need to clarify ambiguities or omissions, and
answers to questions might be oblique. As a result, bid-
ders were forced to make assumptions about require-
ments that might later have to be changed.

Requirements also f luctuated when approvals had to
be obtained from a government regulatory agency. An
agency could create design constraints in the form of
new requirements that differed from, and occasionally
contradicted, those received from customers. The re-
quirements could also change, based on regulatory
evaluations of a completed design.

Vice president: There were changes being driven
by [a government agency's] considerations We
were so used to working hard on a technical deci-
sion and here you had all of a sudden [a gov-
ernment agency] being your sounding board and
you couldn ' t go anywhere until you heard from
[a high-ranking government official].

Company Level
On projects producing commercial products, internal
company groups, such as the market ing department,
often acted as a customer. They could add conflict into
requirements definition since their requirements occa-
sionally differed from those of potential customers.
A common tension occurred, for instance, when mar-
keting wanted to redesign a system to take advantage
of new technology, while existing customers did not
want to lose their investment in software that ran
on the current system. On several projects, the
r equ i r emen t s - - and even the understanding of the
p roduc t - -va r i ed among strategic planning, marketing,
and product planning groups. The design team had to
reduce the conflict between these contending forces in

1276 Communications of the ACM November 1988 Volume 31 Number 11

Computing Practices

their design. This conflict varied with how deeply
groups such as market ing understood the customer 's
application and the limits of existing technology. Mar-
keting groups understood why customers (who were
not necessarily the users} would buy the system, but
this often differed from the application-specific infor-
mation about product use that was needed for design.

Software architect: Marketing came out with a
description that had every single feature of every
similar product and said, "Here do this," and they
expected us to start writ ing software.

Resolving the conflicts among system requirements
created a feedback cycle in which many groups pro-
vided inputs or constraints that had be negotiated into
a design. Some of the toughest decisions involved
tradeoffs between system features and the current mar-
ket trends. Technical requirements were t raded off
against business decisions involving del ivery dates and
other market ing and sales issues.

Vice president: Even though quali ty and perfor-
mance may suffer, it 's better to have people using
your stuff and complaining than to have them us-
ing somebody else's.

Project Level
Unstable requirements, when caused at the project
level, usually resulted from the absence of a defined
mission. Without a sense of mission the motivation for
the project could not be translated into clear product
requirements. When projects were started for political
reasons rather than market demands, requirements
fluctuated with the prevail ing att i tudes of those who
approved funds. Such projects often reflected senior
management 's desire for large organizations under their
authority. In such cases, product requirements were ini-
tially defined as those that would garner company funds,
and the market 's requirements were added retrospec-
tively and had to be updated to justify the project.

System engineer: There 's a big game that goes on
to get giant projects started. You've got to figure
out a way that everybody wins. I mean, develop-
ment people want resources and big projects and
long-term stability and something new and high-
tech. The manager wants something with large rev-
enue potential and something new and exciting to
talk about You just have to know how to play all
the angles We know how to do it, but we never
wrote it down. We don't want to write it down.

Some large projects were started to exploit new, so-
phisticated technology in order to create a market. The
requirements for supporting a new technology often
conflicted with the needs of existing customers. In such
cases, the project became the source for conflicting re-
quirements that had to be resolved through managing
product lines. In other cases, technical advances often
threatened to make a technology obsolete before the

system was delivered. Addit ional requirements were,
therefore, levied on a product during development to
compensate for the technology's growing market weak-
nesses. In such cases, developers were forced to emu-
late a post-release enhancement process before the
product had been delivered.

Requirements were unstable when the initial project
team was more interested in winning a procurement
than in accurately estimating required costs and re-
sources. In competit ive procurements, some require-
ments analyses were driven toward producing a win-
ning proposal rather than toward accurately portraying
the size of the system and the effort required to build it.
Requirements had to be readjusted when the technical
and financial risk in developing the system became
apparent.

Test engineer: They knew [the requirements
were] inaccurate They were trying to competi-
t ively win so the requirements document
looked an awful lot like a proposal. It was not ade-
quate in any fashion to design from If that level
of detail were opened, the customer would have
understood and I don't think [we] would have won
the follow-on.

A frequent conflict among requirements occurred
when the functionality required of the system out-
stripped the processing or storage capacity of the speci-
fied hardware. In such cases, the software crisis was
actually a symptom of a deeper crisis in the mismatch
between the often explosive growth of requirements
[10] compared to the limitations of available hardware.
This crisis was accentuated when the risk and diffi-
culty of resolving this conflict in architecting the soft-
ware was not fully understood or accepted by either
management or the customer.

Team Level
The design team had to clarify the conflicts among re-
quirements and constraints generated both inside the
company and in the marketplace. Resolving some con-
flicts required knowledge of actual user behavior that
was scarce on some design teams. One solution was to
design a flexible system that could be easily modified to
accommodate future changes and technologies. To pro-
duce a flexible product on schedule and within hard-
ware constraints, the requirements were rewri t ten by
the design team to el iminate a smorgasbord of features
and to require mult iple alternatives for a few features.

Software architect: One of the pitfalls in our pro-
cess occurs when . . . marketing, engineering, [and]
development say, "Do we have to make the deci-
sion on how it 's going to operate? Could you write
it both ways?" We say, "Well, it 's going to cost
some resources but we could." The tendency is to
not make the decision This leads to thinking
that we can make everything flexible. In imple-
mentat ion we can do fewer things, because we are
going to do each thing eight different ways.

November 1988 Volume 31 Number 11 Communications of the ACM 1277

Computing Practices

Another solution to conflicting requirements was to
priorit ize them and include as many as possible in the
specification in order of importance. This technique
was effective when conflicts resulted from problems
such as storage limitations. Even so, a consensus on the
specifications was often difficult to bui ld among devel-
opment groups that had to accept and abide by the
rankings. Even after priorities, were negotiated, a con-
sensus was hard to maintain 'without strong leadership
to oversee adherence to priorities. When the pr imary
constraint was schedule, the conflicts might be resolved
by developing an implementat ion plan that phased in
features across system releases.

System engineer: The most difficult thing was al-
locating the features into memory, priorit izing and
making the decisions, getting people to agree to
what we are and are not putt ing in.

Even when the requirements were stable, specifica-
tions occasionally fluctuated because designs for differ-
ent components were not tightly coordinated. In mak-
ing a design decision, designers often made incorrect
assumptions about how another group had interpreted
a requirement. In such cases, a requirement was un-
stable not over time, but over different components of
the system. Without tight coupling of interface deci-
sions among components, inconsistencies became ap-
parent only at integration time.

Project manager: When we see problems it 's often
because they don' t unders tand that you don' t go
bui ld computer programs and bui ld hardware and
someday at the waterfront integrate them.

Unresolved design issues were a great concern for
system engineers who lamented having no tools for
capturing issues and tracking their status. The ratio of
unresolved issues to the number of issues recorded may
be a valuable indicator of design stabili ty and actual
progress in the design phase. Failure to resolve issues
frequently did not become obvious until integration
testing.

Individual Level
New requirements frequently emerged during develop-
ment since they could not be identified until portions
of the system had been designed or implemented. The
need for some requirements could only be determined
after the relevant questions had been posed. Designers
also realized that many stated requirements were open
to interpretation, and therefore, it was difficult to agree
on the proper level of detail for specifying either the
requirements or the design.

Many designers thought that requirements should act
as a point of departure for clarifying poorly understood
functions interact ively with the customer. They argued
that specifications should not be hardened while still
learning about the application domain or the capabili-
ties of the proposed architecture. That is, specification
should not be formalized any faster than the rate of
uncer ta inty about technical decisions is reduced.

Customer representative: You will never really be
able to specify enough detail. It doesn' t mat ter
how. You can even take the actual system and
write the specs around it and still come out
wrong The specifications are something you 've
got to take on trust.

A hidden source of instabil i ty in the requirements
was the creeping elegance that occurred when pro-
grammers went beyond the stated requirements and
continued to add system features. Even with strict con-
trols on the growth of new code, managers were frus-
trated in trying to slow the spread of creeping features.
These features consti tuted new requirements and were
the bottom-up, programmer-dr iven counterpart to
customer-driven requirements fluctuation. Most dis-
turbing, their impact on project schedule and perfor-
mance was often hidden from view.

Quali ty assurer: We've had cases where people
will fake an error in the system in order to be able
to pull the c o d e . . , so that they could replace it
with a whole new implementat ion.

Fluctuating and Conflicting Requirements Summary
Fluctuat ion and conflict among requirements usually
resulted from market factors such as differing needs
among customers, the changing needs of a single cus-
tomer, changes in underlying technologies or in com-
petitors ' products, and, as discussed earlier, from
misunders tanding the application domain. Require-
ments problems could also emerge from such internal
company sources as marketing, corporate politics, and
product line management. When presented with the
requirements statement, the design team often negoti-
ated to reduce conflicts and limit requirements to those
that could be implemented within schedule, budget,
and technical constraints. Nevertheless, it was difficult
to enforce agreements across teams, and programmers
often created a h idden source of requirements fluctua-
tion as they added unrequired enhancements . Although
requirements were in tended as a stable reference for
implementat ion, many sources conspired, often unwit-
tingly, to make this stabili ty illusory. The communica-
tion and coordination processes within a project be-
came crucial to coping with the incessant fluctuation
and conflict among requirements.

COMMUNICATION AND COORDINATION
BREAKDOWNS
A large number of groups had to coordinate their activ-
ities, or at least share information, during software de-
velopment. Figure 6 presents some of the groups men-
t ioned during interviews, clustered into behavioral
layers according to their remoteness from communica-
tion with individual software engineers [56]. Remote-
ness involved the number of nodes in the formal com-
municat ion channel that information had to pass
through in order to link the two sources. The more
nodes that information had to traverse before commu-
nication was established, the less l ikely communicat ion

1278 Communications of the ACM November 1988 Volume 31 Number 11

Computing Practices

was to occur. This model implies that a software engi-
neer would normal ly communicate most frequently
with team members, slightly less frequently with other
teams on the project, much less often with corporate
groups, and, except for rare cases, very infrequently
with external groups. Communicat ion channels across
these levels were often precondit ioned to filter some
messages (e.g., messages about the difficulty of making
changes) and to alter the interpretat ion of others (e.g.,
messages about the actual needs of users). In addit ion
to the hindrances from the formal communicat ion
structure, communicat ion difficulties were also due
to geographic separation, cultural differences, and
environmental factors.

FIGURE 6. Remoteness of communications expressed in the
layered behavioral model,

For example, communicat ion at the team level
mostly concerned system design, implementat ion, or
personal issues. At the project level, proportionately
more of the communicat ion was related to coordinating
technical activities and discussing constraints on the
system. Communicat ion at the company level generally
concerned product attributes, progress, schedules, or
resources. Communicat ion with external organizations
involved user requirements, contractual issues, opera-
tional performance, del ivery planning, and future
business. Thus, communicat ion to each higher level
involved a change in the content of the message, a dif-
ferent context for interpreting the message, and a
more restricted channel for transmission (e.g., the
more remote the level, the less the opportunity for
face-to-face transmission).

Individual Level
Documentation is one form of communicat ion among
project members. Most interviewees, however, indi-
cated frustration with the weakness of documentat ion
as a communicat ion medium. We found little evidence
that documentat ion had reduced the amount of com-
municat ion required among project personnel. Tardi-
ness and incompleteness were not the only problems
with documentation. Many required formats were
insufficient for communicat ing some of the design
information needed throughout the life cycle.

Programmer: Our documentat ion is intended to
be read; it is not "MIL-standards-like."

Documentat ion practices were usual ly vulnerable to
other project pressures. For instance, as the size of the
project grew, project members had to make a tradeoff
between t ime devoted to communicat ing verbal ly with
colleagues and time for recording wri t ten information
for future project members. Many communicat ion re-
lated activities that appeared to be good software engi-
neering practices were almost unworkable when scaled
up to support communicat ion on large projects with
deadline pressures.

Programmer: I think this is the way it always
turns out with this stupid design of large systems.
In the b e g i n n i n g . . , there were 3 of us. How many
lines of communicat ion are there, 1, 2, 3? But once
you go to 15 people it can get out of hand In the
beginning, it was easy to keep track of what was
going on. It was only after reaching the critical
m a s s . . , that things began falling into the cracks,
and we were losing track ! used to religiously
keep track of the [change notices], but now I don't
think I 've looked at them in 6 months. I just
couldn' t keep up with everything else going on.
There was just so much going on.

Most project members had several nets of people they
talked with to gather information on issues affecting
their work [50]. Similar to communicat ion structures
observed in R&D laboratories [3, 4], each net might
involve different sets of people and cross organizational
boundaries. Each net supported a different flow of in-
formation, as shown in Figure 7. When used effectively,
these sources helped coordinate dependencies among
project members and supplemented their knowledge,
thereby reducing learning time. Integrating information
from these different sources was crucial to the perfor-
mance of individual project members.

System engineer: I get my r e q u i r e m e n t s . . , by
talking. I spend a third of my time talking with
requirements people and helping them negotiate.

Team Level
The communicat ion needs of teams were poorly served
by wri t ten documentat ion since it could not provide

FIGURE 7. Examples of a programmer's communication nets.

November 1988 Volume 31 Number 11 Communications of the ACM 1279

Computing Practices

the dialectic necessary to resolve misunderstandings
about requirements or design decisions among project
members. Rather, forging a common understanding of
these issues required interaction.

System engineer: In the dynamics of the team
there is only one way- -ve rba l Paper disap-
pears, it gets in a stack. I 'm sure people read it
but the ul t imate method for managing require-
ments level activity with a small group of 10 or 20
people is 10 hours of meetings a day. And then you
go work 5 hours.

Many techniques were used to organize and commu..
nicate a shared system model. Successful projects usu-
ally established common representat ional conventions
to facilitate communicat ion and to provide a common
reference for discussing system issues. From a team
perspective, this sort of representat ion was valuable as
a common dialect for project argumentation, rather
than as a basis for static documentation.

System engineer: The ER diagram means that
everybody speaks the same language. Developers,
designers, human performance people, we all use
the same language It was 6 months or so before
it sett led down, but once it did, we could resolve
all problems in terms of the diagram.

Once the development team had accepted common
representat ional conventions (a process that could take
six months or longer), its members could resolve dis-
agreements and misunderstandings by referencing the
structures in a diagram. System engineers were usually
adamant about having the freedom to select a represen-
tational format that matched the application domain's
structure. After selecting and tailoring the format, con-
siderable effort was spent to establish agreement on
diagrammatic conventions. In the early stages, disagree-
meats over naming conventions could take as much
time as did system decomposition.

System engineer: At least they know to carry
around their dict ionary when they talk to us. Being
done with a phase of development what does
"done" mean? We could never settle on that, so we
settled on what "done done" means. The first
"done" means internal done, and the second
"done" means external done.

Project Level
Project managers often found it difficult to establish
communicat ion between project teams unless commu-
nication channels opened naturally. Since documenta-
tion did not provide sufficient communicat ion, reviews
were often the most effective channels. In fact, commu-
nication was often cited as a greater benefit of formal
reviews than was their official purpose of finding de-
fects. At other times, communicat ion among teams was
thwarted by managers for reasons that ranged from the
politics of forging a lead over other teams to a lack of
appreciation for coordination :requirements.

Some communicat ion breakdowns between project
teams were avoided when one or more project mem-
bers spanned team or organizational boundaries [1].
One type of boundary spanner was the chief system engi-
neer who translated customer needs into terms under-
stood by software developers. Boundary spanners trans-
lated information from a form used by one team into a
form that could be used by other teams. Boundary
spanners had good communicat ion skills and a willing-
ness to engage in constant face-to-face interaction; they
often became hubs for the information networks that
assisted a project 's technical integration. In addition,
they were often crucial in keeping communicat ion
channels open between rival groups.

System engineer: The parochial interest was a big
deal. There was a lot of concern about loss of con-
trol over some aspect of the system and personali ty
entered into that a lot Because ! appeared rela-
t ively harmless to everybody in the organization,
I didn ' t have any trouble moving back and forth
from one group to the other. But there were times
when [people would ask me], "When you ' re going
to be talking to such-and-such would you please
tell him to " that type of thing.

The social structure of the project was occasionally
factored into architectural decisions. The system parti-
t ioning that reduced connectivi ty among components
also affected communicat ion among project personnel.
Higher connectivi ty among components required more
communicat ion among developers to maintain agreed
upon interface definitions. Occasionally, the parti t ion-
ing was based not only on the logical connectivi ty
among components, but also on the social connectivi ty
among the staff.

System engineer: The real p r o b l e m . . , was parti-
t ioning the system enough so we could minimize
the interfaces required be tween people. In fact, it
was more important to minimize the interfaces
between system engineers than it was to make the
system logical from the viewpoint of the user.

Company Level
Companies usually established formal processes for
making and reviewing decisions about the design of
large systems. These structures, however, were often
ineffective for communicat ing design problems that
arose in sections of the organization that were not part
of the formal process. Rather, informal personal con-
tacts were frequently the most effective way to trans-
mit messages across organizational boundaries.

System engineer: The original impetus that I got
to define something that could be used for all the
machines came from, surprisingly enough, same
member of the Board of Directors who is not an
employee of the corporation, [and] who couldn' t
understand why we had different [computational
platforms] . . .

"1280 Communications of the ACM November 1988 Volume 31 Number 11

Computing Practices

Interviewer: You just knew him? How did you
get the message from him?
System engineer: A dove descended with it. You
know how it is.

When groups such as marketing, systems engineer-
ing, software development, quali ty assurance, and
maintenance reported to different chains of command,
they often failed to share enough information. This
problem is not surprising in a government environment
where security requires tactical information about a
system to be classified. Yet, even on commercial proj-
ects information was occasionally wi thheld from a
development group for reasons ranging from political
advantage to product security.

Software architect: Even the product description
for this project is a secret document for only people
who need to know. I know that there were at least
three revisions that I didn ' t hear about until 6
months after the fact. Some of the changes we are
making now might have been avoided if we would
have had earl ier access to it.

Even when all of the interacting teams were in the
same division, work on different phases (e.g., proposal,
definition, development, delivery, and maintenance) of
a large project was often performed by different groups.
Figure 8 presents a typical work flow among teams re-
sponsible for different phases. Communicat ion prob-
lems occurred in the transit ion between phases when
groups transferred intermediate work products to suc-
ceeding groups. When a later redesign was under taken
and the previous design team had dispersed, these
problems were exacerbated.

I:=,L,. :::::',::;°. i!i}2: ° i!o;:!i:; i iT::"
FIGURE 8. Teams responsible for different phases of the life

cycle.

Although documentat ion was not accepted as an
alternative to talking with colleagues, it was often the
main source of communicat ion between successive
teams. Unfortunately, much of the needed information
had not been recorded because of schedule pressures.
Also, communicat ing system knowledge between these
teams depended on continuing personnel from one
team to the next.

System engineer: We didn ' t have enough docu-
mentation. We didn ' t have enough code review.
We didn' t have enough design review We're
going to suffer because all the smart guys who de-
veloped the system are now going to l e a v e . . , and
what are the poor [expletive deleted] who have to

maintain the system going to d o ? . . . How do you
get our management to see that that 's important
and to give us the brownie points for doing it.

Business Milieu
Coordinating understanding of an application and its
environment required constant communicat ion be-
tween customers and developers. Developers had to
clarify the meaning of terms and the associations be-
tween different objects or processes to avoid misinter-
preting a requirement. Contact between customer and
developer needed to be direct since intermediaries
often had difficulty identifying the subtleties that had
been misunderstood. This communicat ion was required
to establish a mutual frame of reference.

Customer representative: I think [we] had to
learn as well as [the developers] At the time
we wrote the specification, we did not appreciate
that it could be interpreted any other way This
part icular thing was so obvious to me as an opera-
tor, you know, it 's common knowledge. It's one of
the basics you teach the unini t iated student.
Everyone knows I should have known.

On most large projects, the customer interface was an
organizational communications issue and this interface
too often restricted opportunities for developers to talk
with end users. For instance, the formal chain of com-
municat ion between the developer and the end user
was often made more remote by having to traverse two
nodes involving the developer 's market ing group and
the end user 's manager. At the same t ime this interface
was often cluttered with communicat ions from non-
user components of the customer 's organization, each
with its part icular concerns. Typically, development
organizations said they would like to have, but could
not get, a single point of customer contact for defining
system requirements. None of the large projects we
interviewed had a lone point of customer contact for
defining requirements.

Often, the largest problem in managing a government
contract involved the complexity of the customer inter-
face [58]. This interface usually included many differ-
ent agencies, each with a different agenda and each
representing itself as the customer. Figure 9 depicts a

l]_~°~'~'n',l~ --I l s bco.i,.cto, N

--i-I N
"lll'l ,Subcontractor I]

-"qSu coo,,,o'o, N

N

FIGURE 9. Customer interfaces on a DOD project.

November 1988 Volume 31 Number 11 Communications of the ACM 1281

Computing Practices

simplified set of interfaces for a large contract with the
Department of Defense (DOD). The interface might be
comprised of organizations such as:

• senior DOD officials who championed the system
• the procurement office thai: tracks costs, schedules,

and acceptance criteria
• an operational systems engineering group involved in

specifying the system
• the commanders whose troops will use the equip-

ment
• the actual operators of the ,equipment
• the Independent Validation. and Verification (IV&V)

contractor who inspects the software artifacts for
DOD

The coordination of these projects became further com-
plicated when the development organization was itself
a customer for the components built by its subcontrac-
tors.

One of the most significant challenges to governmen't
or commercial deve lopmen t teams was to coordinate
communications from different customer sources to
develop a consistent understanding of the customer's
requirements. When several customer sources gave
inconsistent input, project personnel had to negotiate
among them to clarify requirements. Conversely, differ-
ent project members needed to provide consistent an-
swers to the customer, and establishing a single point
of contact for coordinating these communications was
difficult.

When the communication channels to the customer
were remote, necessary changes were often stifled.
Communicating with DOD was especially difficult
when the software project was subcontracted from a
hardware company that held the prime contract. The
approval cycle required for a change to the specifica-
tions was often too time-consuming to justify any but
the most necessary modifications.

Programmer: I got myself in trouble with a pro-
gram manager one time because I said, "I know this
[function] is wrong so we're just going to change
it." We changed it and made it work. But he said,
"No, no, no, go back and do it the way the spec
says, because that spec came from the customer."
. . . It is still not c h a n g e d . . , to be correct. That
particular function gives nonsense answers.

Designers needed operational scenarios of system use
to understand the application's behavior and its envi-
ronment. Unfortunately, these scenarios were too sel-
dom passed from the customer to the developer. Cus-
tomers often generated such scenarios in determining
their requirements but did not record them and ab-
stracted them out of the requirements document. With-
out deep application knowledge, designers worked from
the obvious scenarios of application use and were una-.
ble to envision problematic and exceptional conditions
the customer would ultimately want handled.

In some cases, classified documents contained opera-
tional scenario information, but the software designers

could not obtain the documents from the customer. It
was assumed that developers did not have a need to
know. There might have been less need for system pro-
totypes meant to collect customer reactions if informa-
tion generated by potential users had been made avail-
able to the project team. That is, many projects spent
tremendous time rediscovering information that, in
many cases, had already been generated by customers,
but not transmitted to developers.

Communicat ions and Coordination Summary
Large projects required extensive communication that
was not reduced by documentation. Project staff found
the dialectic process crucial for clarifying issues. Partic-
ularly during early phases, teams spent considerable
time defining terms, coordinating representational con-
ventions, and creating channels for the flow of informa-
tion. Artificial (often political) barriers to communica-
tion among project teams created a need for individuals
to span team boundaries and to create informal com-
munication networks. Organizational and temporal
boundaries made some communication channels espe-
cially remote. Organizational boundaries hindered un-
derstanding the requirements, while temporal bounda-
ries buried the design rationale. The complexity of the
customer interface hindered the establishment of stable
requirements and increased the communication and
negotiation costs of the project. Since no single group
served as the sole source of requirements in either
commercial or government environments, organi-
zational communications became crucial to managing
the project.

CONCLUSIONS

The Behavioral Processes of Software Development
The problems elaborated in the preceding sections were
described many times across projects that varied in
size, technology, company, and customer. The way
problems manifested themselves though, differed
among projects. Chronicled by Weinberg [61], Brooks
[14], Fox [27], and others, these problems have sur-
vived for several decades despite serious effort at im-
proving software productivity and quality. We are not
claiming to have discovered new insights for engineer-
ing management. Rather, we are trying to organize ob-
servations about the behavioral processes of large sys-
tems design to help identify which factors must be
attacked to improve overall project performance. We
are seeking to understand the mechanisms underlying
these problems in order to design more effective soft-
ware development practices and technology. The ques-
tion is not whether we learned something new, but
what did we observe that keeps us from acting on all
those things we already knew.

Our interviews indicated that developing large soft-
ware systems must be treated, at least in part, as a
learning, communication, and negotiation process.
Much early activity on a project involved learning
about the application and its environment, as well as

1282 Communications of the ACM November 1988 Volume :31 Number 11

Computing Practices

new hardware, new development tools and languages,
and other evolving technologies. Software developers
had to integrate knowledge from several domains be-
fore they could perform their jobs accurately. Further,
as the project progressed they had to learn about design
and implementation decisions being made on other
parts of the system in order to ensure the integration of
their components. Characteristically, customers also
underwent a learning process as the project team ex-
plained the implications of their requirements. This
learning process was a major source of requirements
fluctuation.

A small subset of the design team with superior ap-
plication domain knowledge often exerted a large im-
pact on the design. Collaborative problem solving is
related to productivity more often in small, rather than
large, teams [23]. Similarly, the small, but influential,
design coalitions that developed on numerous projects
represent the formation of a small team in which col-
laboration was more effective. This decomposition of a
large design team into at least one smaller coalition
occurred when a few designers perceived their tighter,
less interrupted collaboration would expedite the crea-
tion of a workable design. Exceptional designers, when
available, were at the heart of these coalitions and
accepted responsibility for educating the design team
about the application and ensuring their technical
cohesiveness.

Fluctuation and conflict among requirements af-
flicted large system development projects continuously.
Whether they are called ill-structured problems [47] or
wicked problems [49], the unique obstacles encountered
in large software projects typically did not plague small,
well-understood software applications with complete
and stable specifications. These requirements problems
emerged from the learning process at the heart of the
dialectic between customers and developers. There was
a natural tension between getting requirements right
and getting them stable. Although this tradeoff ap-
peared to be a management decision, it was just as
often adjudicated by system engineers. Fluctuation and
conflict among requirements were exacerbated when
several organizational components presented them-
selves as the customer and the developers had to nego-
tiate a settlement.

Organizational boundaries to communication among
groups both within companies and in the business mi-
lieu inhibited the integration of application and compu-
tational knowledge. These communication barriers
were often ignored since the artifacts produced by one
group (e.g., requirements documents from marketing)
were assumed to convey all the information needed by
the next group (e.g., system designers). Designers com-
plained that constant verbal communication was
needed between customer, requirements, and engineer-
ing groups. Organizational structures separating engi-
neering groups (hardware, software, and systems) often
inhibited timely communication about application
functionality in one direction and feedback about im-
plementation problems that resulted from system de-
sign in the other direction. When coalitions formed

around conflicting views of the design, they typically
formed along organizational lines.

Although far from the only issues participants de-
scribed, requirements issues were a recurring theme in
our interviews. The three problems we described pro-
vide, among other things, three views of the require-
ments problem: how system requirements were under-
stood, how their instability affected design, and how
they were communicated throughout a project. Al-
though a circumscribed requirements phase can be
identified in most software process models, require-
ments processes occur throughout the development
cycle.

Implications for Software Tools and Practices
The descriptions provided in our interviews indicate
how productivity and quality factors influenced project
performance. Three issues, in particular, must be ad-
dressed if software productivity and quality are to be
improved. The first is to increase the amount of appli-
cation domain knowledge across the entire software
development staff. Designers of software development
environments should discover ways for these environ-
ments to creatively facilitate the staff-wide sharing and
integration of knowledge.

Second, software development tools and methods
must accommodate change as an ordinary process and
support the representation of uncertain design deci-
sions. For instance, the essence of simulation and pro-
totyping is a process of exploration, discovery, and
change. Whether design decisions are delayed, or
whether new requirements are negotiated among sev-
eral customer components, change management and
propagation is crucial throughout the design and devel-
opment process.

Finally, any software development environment must
become a medium of communication to integrate peo-
ple, tools, and information. If information created out-
side of the software tools environment must be man-
ually entered, developers will find ways around using
the tools, and information will be lost. Lost information
and poor communication facilities make the coordina-
tion task more difficult. Thus, three capabilities that we
believe must be supported in a software development
environment are knowledge sharing and integration,
change facilitation, and broad communication and
coordination.

Software development tools and practices had disap-
pointingly small effects in earlier studies, probably be-
cause they did not improve the most troublesome pro-
cesses in software development. Understanding the
behavioral processes of software development allows us
to evaluate the claims for software tools and practices.
Conceptually, this understanding helps us reason
whether a given tool or practice can affect the pro-
cesses underlying the problem it claims to solve. Empir-
ically, it helps identify which processes should be
measured in evaluating whether the tool or practice
can spark improvement. If a tool is used in individual
activities by designers, and the benefits they experience
individually do not scale up to reduce a project's effort

November 1988 Volume 31 Number 11 Communications of the ACM 1283

Computing Practices

or mistakes, then we should not be surprised when
little impact shows up in productivity and quality data.
If a tool or practice failed to impact at least one of the
three problems we discussed in this article, we would
be surprised if it had substantial impact on the per-
formance of large projects.

Implications for Project Management
Although we initiated this project to study organi-
zational level factors in software development, we were
constantly confronted with the impact of individual
talent and experience on a project. After observing sim-
ilar effects in his productivity data, Boehm concluded:
"Personnel attributes and human relations activities
provide by far the largest source of opportunity for
improving software productivity" [9 p. 666]. Brooks
reiterated this point: "The central question in how to
improve the software art centers, as it always has, on
people" [15 p. 18]. This view was reflected with re-
markable consistency in interviews with vice presi-
dents from different companies.

Vice president 1: I guess if you had to pick one
thing out that is most important in our environ-
ment, I'd say it's not the tools that we use, it's the
people.
Vice president 2: The most important ingredient
that was successful on this project was having
smart peop l e . . . Very little else matters in my
opinion The most important thing you do for a
project is selecting the staff The success of the
software development organization is very, very
much associated with its ability to recruit good
people.
Vice president 3: The only rule I have in manage-
ment is to ensure that I have good people--real
good people--and that I grow good people, and that
I provide an environment where good people can
produce.

Given the amount of knowledge to be integrated in
designing a large software system and the inability of
current technology to automate this integration [48],
these opinions are not surprising. Contributions by good
people do not come just from their ability to design and
implement programs. A myriad of other processes--
resolving conflicting requirements, negotiating with the
customer, ensuring that the development staff shares a
consistent understanding of the design, and providing
communications between two contending groups--are
crucial to project performance and require faculties
that no tool or practice can provide.

The constant need to share and integrate information
suggests that just having smart people is not enough.
The communication necessary to develop a shared vi-
sion of the system's structure and function, and the
coordination necessary to support dependencies and
manage changes on large system projects are team is-
sues. Individual talent operates within the framework
of these larger social and organizational processes. The

influence of exceptional designers was exercised
through their impact on other project members and
through their ability to create a shared vision to orga-
nize the team's work. Recruiting and training must be
coupled with team building [55] to translate individ-
ual talent into project success. Thus, the impact of pro-
cesses at one level of the layered behavioral model
must be interpreted by their impact on processes at
other levels.

Implications for Software Process Models
A typical statement that we heard from participants
was that, you've got to understand, this isn't the way
we develop software here. This type of comment sug-
gested that these developers held a model of how soft-
ware development should occur, and they were frus-
trated that the conditions surrounding their project
would not let them work from the model. The fre-
quency of this comment also suggested that the model
most developers envisioned accounted poorly for the
environmental conditions and organizational context of
software development. The participants we interviewed
were uniformly motivated to do a good job, but they
had to mold their development process to navigate
through a maze of contingencies.

These interviews provided a clearer understanding of
such crucial processes as learning, technical communi-
cation, requirements negotiation, and customer interac-
tion. These processes are poorly described in software
process models that focus instead on how a software
product evolves through a series of artifacts such as
requirements, functional specifications, code, and so
on. Existing software process models do not provide
enough insight into actual development processes to
guide research on software development technologies.
Models that only prescribe a series of development
tasks provide no help in analyzing how much new in-
formation must be learned by a project staff, how dis-
crepant requirements should be negotiated, how design
teams resolve architectural conflicts, and how these
and similar factors contribute to a project's inherent
uncertainty and risk. Boehm's spiral model is a promis-
ing attempt to manage these issues at a macro level
[11].

The layered behavioral model must be integrated
with evolutionary process models in order to create a
comprehensive model of the software development
process. When we overlay cognitive, social, and organi-
zational processes on the phased evolution of software
artifacts, we begin to see causes for bottlenecks and
inefficiencies in development. The more deeply project
managers understand these behavioral processes, the
greater their insight into the factors that determine
their success.

The layered behavioral model encourages greater
focus on the human processes that exert so much influ-
ence on software productivity and quality. For this
model to mature beyond its current descriptive state,
rules of aggregation must be posed that provide the

1284 Communications of the ACM November 1988 Volume 31 Number 11

model with analytic power for at least some develop-
ment processes. Aggregating behavior across layers in
the model exposes the effects of new processes added at
each layer. Aggregation also indicates how the impact
of processes such as communication may not scale lin-
early across layers. Behavioral processes at each layer
are useful analytically only if they make independent
contributions to understanding software development
processes. The relative importance of each layer's con-
tribution will vary with the process or problem under
analysis. Further work with this model may indicate
analyses for which new layers need to be identified or
existing layers combined. Our goal is to fashion a useful
tool for analyzing how different factors in software de-
velopment affect project behavior--and, ultimately,
project outcomes.

Implications for Ecological Research on Professional
Programming
This study provides an ecological perspective on soft-
ware design, since software design problems were as-
sessed against the backdrop of the working environ-

Computing Practices

ment in which they occurred. Ours, however, was not a
purely ecological analysis. Traditionally, the ecological
perspective has only focused on how characteristics of
the situation affected human behavior [5, 45]. Rather,
the information in our interviews forced us to account
for differences among individual project members and
to determine how these differences interacted with var-
iations among situations. Therefore, our analysis is
more accurately characterized as interactionist [41, 52,
53] since we attributed variation in software productiv-
ity and quality to differences between both people and
situations and their interaction.

The exploratory ecological research reported here ex-
posed many of the processes that affect software pro-
ductivity and quality. The MCC Software Technology
Program is using these insights as problem-driven input
to its research on advanced software design environ-
ments. As research artifacts are developed, the focus of
our empirical research will shift from exploratory to
evaluative. Evaluative research will investigate how
the most important productivity and quality factors can
be improved by changing either the process or technol-
ogy of software development.

APPENDIX A: FIELD

Interview Format
This field study consisted of structured interviews [13,
25, 60, 62] with design team members who held differ-
ent roles (e.g., system engineer, lead software architect,
project manager). In designing these structured inter-
views, each member of our field study team indepen-
dently generated a set of questions for each level in the
layered behavioral model and indicated the project
roles for each question. These questions focused on
such upstream activities as customer interaction, re-
quirements analysis, design meetings, and project com-
munications. The questions were then reduced to a sin-
gle set that was reviewed by representatives from each
participating company to ensure their relevance across
software environments.

The questions were open-ended and allowed partici-
pants to formulate answers in their own terms. Thus,
the questions were points of departure for participants
to describe their opinions about important events and
challenges during software design, and their insights
were explored in depth. Participants were encouraged
to recall as much information as possible about the
process of designing their system and the factors that
affected its productivity and quality. Questions produc-
ing identical answers over a number of projects were
eventually dropped from the interviews, and new ques-
tions were added when we learned of additional pro-
cesses needing investigation.

Interviewers worked in pairs [38] with one inter-
viewer taking the lead, while the other recorded notes
about important points. This division of responsibilities
increased rapport with participants, since they had the

STUDY METHODS

questioner's full attention, We found tandem interview-
ing had two additional advantages. First, interviewers
often exchanged the lead role several times during the
interview as topics changed, or as one interviewer be-
gan to tire. The ability to shift roles kept the pace of the
interview lively and provided timely opportunities for
shifts in focus. Second, the interviewer exercising the
support role often requested deeper explanations of im-
portant points not pursued by the lead interviewer.

We piloted our field study methods on a project in
our own laboratory and videotaped our interviews for
study and critique. We also conducted a pilot field
study an a participant company project. Further, prior
to beginning formal data collection we worked with an
anthropologist/psychologist team experienced in inter-
viewing software development projects in order to re-
fine our methods and enhance participants' willingness
to reveal their experiences.

Interview Bias
The information gathered from these interviews was
subjective. By interviewing numerous participants in
varying positions (e.g., manager, designer), we at-
tempted to balance the perspectives presented on each
project. Nevertheless, bias can result from various in-
teractions between the interviewers and respondents
which can affect interview data. We will describe the
most significant biases in our methods and explain how
we minimized their impact.

Warwick and Lininger [60] warn of four interviewing
mistakes that we attempted to minimize. First, reshap-
ing questions to match the participant's role in the proj-

November 1988 Volume 31 Number 11 Communications of the ACM 1285

Computing Practices

ect presented few problems, since we were not attempt-
ing to derive quantitative data from the responses.
Second, tandem interviews increased the probing nec-
essary to obtain full explanations of answers. Third,
tape recording eliminated data recording errors. Fi-
nally, we did not have to motivate participants, since
most were anxious to discuss their work with people
interested in listening. Some even returned after hours
to complete interviews.

The bias introduced into the interview data by the
participants was a more serious concern. Of the various
types of participant bias discussed in the interviewing
literature, three presented the greatest problems for in-
terpreting our data. The social desirability bias occurred

when participants constructed answers to conform to
the norms of their location or professional group. The
self-presentation bias occurred when participants de-
scribed their role in past events in a more favorable or
i m p o r t a n t l i g h t t h a n w a s a c t u a l l y t h e c a s e . T h e plausi-

bility bias o c c u r r e d w h e n p o r t i o n s o f a n e v e n t h a d b e e n

forgotten and were reconstructed with plausible expla-
nations that differed from the actual events. Recalling
past events is a reconstructive process [39]. We at-
tempted to detect these biases by deeply probing parti-
cipant's answers and comparing explanations of the
same events with answers provided by other partici-
pants to piece together the most likely sequence and
explanation of events on a project.

Acknowledgments. We recognize strong contributions
to this research from Vincent Shen, who assisted in the
collection and summary of the interview data, and from
Barbara Smith, who spent so many hours transcribing
tapes. We thank the remaining members of the MCC-
STP empirical studies team (Diane Walz, Raymonde
Guindon, and Nancy Pennington} for their thoughtful
contributions, and our colleagues who provided insight-
ful reviews (Jim Babcock, Barry Boehm, Fred Brooks,
Jack Carroll, Jonathan Grudin, Peter Marks, Colin Potts,
Stan Rifkin, Ben Shneiderman, Elliot Soloway, and
Jerry Weinberg}. We also thank Dani and Jerry Wein-
berg for help in refining interview techniques and Les
Belady for his continuing support of our Empirical
Studies of Software Design project. We are indebted to
the companies in MCC's Software Technology Program
and their employees who candidly participated in this
study, and we thank the company liaisons for arranging
these interviews. Brief reports of this research have ap-
peared in the proceedings of the Ninth International
Conference on Software Engineering, the Eleventh
NASA Software Engineering Workshop, and the Second
Workshop on Empirical Studies of Programmers.

REFERENCES
1. Adams, J.S. The structure and dynamics of behavior in organi-

zational boundary roles. In Handb. Ind. Organ. Psychol., Ed. M.D.
Dunnette. Rand-McNally, Chicago, (1976}, pp. 1175-1199.

2. Adelson, B., and Soloway, E. The role of domain experience in
software design. IEEE Trans. Softw. Eng. 11, 11 {Nov. 1985), 1351-
1360.

3. Allen, T.J. Communication networks in R&D laboratories. R&D
Manage. 1, 1 (Jan. 1970), 14-21.

4. Allen, T.J. Organizational structure, information technology, and
R&D productivity. IEEE Trans. Eng. Manage. 33, 4 (Apr. 1986J, 212-
217.

5. Barker, R.G. Ecological Psychology: Concepts and Methods for Studying
the Environment of Human Behavior Stanford Univ. Press, Pale Alto,
Calif., 1986.

6. Barstow, D.R. Domain-specific automatic programming. IEEE Trans.
Soflw. Eng. 11, 11 (Nov. 1985), 1321-1336.

7. Belady, L.A. The Japanese and software: Is it a good match? IEEE
Comput. 19, 6 {June 1986}, 57-61.

8. Benbasat, I., Goldstein, D.K., and Mead, M. The case research strat-
egy in studies of information systems. MIS Q. 11, 3 (Mar. 1987),
369-386.

9. Boehm, B.W. Software Engineering Economics. Prentice-Hall, Engle-
wood Cliffs, N.J., 1981.

10. Boehm, B.W. Improving software productivity. IEEE Comput. 20, 9
(Sept. 1987), 43-57.

11. Boehm, B.W. A spiral model of software development and mainte-
nance. IEEE Comput. 21, 5 (May 1988}, 61-72.

12. Bouchard, T.J. Field research methods. In Handb. Ind. Organ. Psy-
chol., Ed. M.D. Dunnette. Rand-McNally, Chicago, (1976), pp.
363-413.

13. Brenner, M., Brown, J., and Canter, D. The Research Interview: Uses
and Approaches. Academic Press, London, 1985.

14. Brooks, F.P. The Mythical Man-Month. Addison-Wesley, Reading,
Mass., 1975.

15, Brooks, F.P. No silver bullet. IEEE Comput. 20, 4 (Apr. 1987), 10-19.
16. Card, D.N., McGarry, F.E., and Page, G.T. Evaluating software engi-

neering technologies. IEEE Trans. Soflw. Eng. 13, 7 (luly 1987}, 845-
851.

17. Christiansen, D. On good designers. IEEE Spectrum 24, 5 (May 1987),
25.

18. Curtis, B. Measurement and experimentation in software engineer-
ing. Prec. IEEE 68, 9 (Sept. 1980), 1144-1157.

19. Curtis, B. Substantiating programmer variability. Prec. IEEE 69, 7
(July 1981), 846.

20. Curtis, B. Human Factors in Software Development. 2d ed. IEEE Com-
puter Society, Wash., D.C., 1985.

21. Curtis, B., Sheppard, S.B., Kruesi-Bailey, E., Bailey, J., and Boehm-
Davis, D. Experimental evaluation of software documentation for-
mats. J. Syst. Soflw. In press.

22. Curtis, B., Soloway, E., Brooks, R., Black, J., Ehrlich, K., and Ramsey,
H.R. Software psychology: The need for an interdisciplinary pro-
gram. Prec. IEEE 74, 8 (Aug. 1986}, 1092-1106.

23. Dailey, R.C. The role of team and task characteristics in R&D team
collaborative problem solving and productivity. Manage. Sci. 24, 15
(Nov. 1978), 1579-1588.

24. DeMarco, T., and Lister, T.A. Peopleware. Dorset, New York, 1987.
25. Fenlason, A.F, Fergnson, G.B., and Abrahamson, A.C. Essentials in

Interviewing. Harper & Row, New York, 1962.
26. Fischer, B.A. Small Group Decision-Making. 2d ed. McGraw-Hill, New

York, 1980.
27. Fox, J.M. Software and Its Development. Prentice-Hall, Englewood

Cliffs, N.J., 1982.
28. French, J.R.P., and Raven, B. The bases of social power. In Studies in

Social Power, Ed. D. Cartwright, Institute for Social Research, Ann
Arbor, Mich., 1959, pp. 150-167.

20. Gould, I.D., and Lewis, C. Designing for usability: Key principles and
what designers think. Commun. ACM 28, 3 (Mar. 1985), 300-311.

30. Guinan, P.J., and Bostrom, R.P. Communication Behaviors of Highly-
Rated Versus Lowly-Rated System Developers: A Field Experiment. The
Institute for Resesrch on the Management of Information Systems,
Indiana Univ., 1987.

31. Guindon, R., and Curtis, B. Control of cognitive processes during
design: What tools would support software designers? In Conference
Proceedings of CHI'88, (Washington, D.C., May 1988}. ACM, New
York, 1988, 263-268.

32. Guindon, R., Krasner, H., and Curtis, B. Breakdowns and processes
during the early activities of software design by professionals. In
Empirical Studies of Programmers: Second Workshop, Ed. G. Olsen, et
el., Ablex, Norwood, N.J., (1987), 65-82.

33. Hastie, R. Experimental evidence on group accuracy. In Information
Processing and Group Decision-Making, Ed. G. Owen, and B. Grofman.
JAI Press, Westport, Conn., 1987, 129-157.

34. Jeffries, R., Turner, A.A., Poison, P.G., and Atwood, M.E. The pro-
cesses involved in designing software. In Cognitive Skills and Their

1286 Communications of the ACM November 1988 Volume 31 Number 11

Computing Practices

Acquisition, Ed. J.R. Anderson. Erlbaum, Hillsdale, N.J., 1981, pp.
255-283.

35. Jones, T.C. The limits to programmer productivity. In Proceedings of
the Joint SHARE/GUIDE/IBM Applications Symposium, SHARE/
GUIDE, Chicago, (1979), pp. 77-82.

36. Kant, E., and Newell, A. Problem solving techniques for the design
of algorithms, lnfo. Process. Manage. 28, 1 (Jan. 1984), 97-118.

37. Kernaghan, J. A., and Cooke, R.A. The contribution of the group
process to successful group planning in R&D settings. IEEE Trans.
Eng. Manage. 33, 3 (Mar. 1986), 134-140.

38. Kincaid, H.V., and Bright, M. The tandem interview: A trial of the
two-interviewer team. Public Opin. Q. 21, (1957), 304-312.

39. Klatzky, R.L. Human Memory: Structures and Processes. San Francisco,
W.H. Freeman, 1975.

40. Kling, R. The web of computing: Computer technology as social
organization. Vol. 21, Adv. Comput. Addison-Wesley, Reading, Mass.,
1982, pp. 1-90.

41. Magnusson, D. Toward a Psychology of Situations: An Interactionist
Perspective. Erlbaum, Hillsdale, N.J., 1981.

42. Malhotra, A., Thomas, J.C., Carroll, J.M., and Miller, L.A. Cognitive
processes in design. Int.]. Man-Machine Stud. 12, (1980}, 119-140.

43. McGarry, F.E. What have we learned in the last six years? In
Proceedings of the Seventh Annual Software Engineering Workshop
(Greenbelt, Md., Dec. 1982}, NASA-GSFC, Greenbelt, Md., 1982.

44. Mills, J.A. A pragmatic view of the system architect. Commun. ACM
28, 7 (July 1985), 708-717.

45. Moos, R.H., and Insel, P.M. Issues in Social Ecology: Human Milieus.
National Press Books, Pale Alto, Calif., 1974.

46. Myers, W. MCC: Planning the revolution in software. IEEE Soflw. 2,
6 (Nov. 1985), 68-73.

47. Newell, A. Heuristic programming: Ill structured problems. Vol. 3, In
Prog. Oper. Res., Ed. J. Aronofsky. Wiley, New York, 1969, pp. 360-
414.

48. Rich, C., and Waters, R.C. Automatic programming: Myths and pros-
pects. IEEE Comput. 21, 8 (Aug. 1988), 40-51.

49. Rittel, H.W.J., and Webber, M.M. Dilemmas in a general theory of
planning. Policy Sci. 4, 1973, 155-169.

50. Rogers, E.M., and Kincaid, D.L. Communication Networks: Toward a
New Paradigm for Research. Free Press, New York, 1981.

51, Scacchi, W. Managing software engineering projects: A social analy-
sis. IEEE Trans, Softw. Eng. 10, 1 (Jan. 1984), 49-59.

52, Sells, S.B. An interactionist looks at the environment. Am. Psychol.
18, 11 {Nov. 1963}, 696-702.

53, Sells, S.B. Ecology and the science of psychology. Multivariate Behav.
Res. 1, 2 (Feb. 1966), 131-144.

54. Swanson, E.B., and Beath, C.M. The use of case study data in soft-
ware management research. J. Syst. Softw. 8, 1 (Jan. 1988), 63-71.

55. Thamhain, H.J., and Wilemon, D.L. Building high performance engi-
neering project teams. IEEE Trans. Eng. Manage. 34, 3 (Mar. 1967),
130-137.

56. Tushman, M.L. Special boundary roles in the innovation process.
Adm. Sci. Q. 22, 4 (Winter 1977}, 587-605.

57. Vosburgh, J., Curtis, B., Wolverton, R., Albert, B., Malec, H., Hoben,
S., and Liu, Y. Productivity factors and programming environments.
In Proceedings of the Seventh International Conference on Software Engi-
neering (Orlando, Fla., Mar. 1984}. IEEE Comput. Soc., Washington,
D.C., 1984, pp. 143-152.

58. Walston, C.E., and Felix, C.P. A method of programming measure-
ment and estimation. IBM Syst.]. 16, 1 (Jan. 1077}, 54-73.

59. Walz, D., Elam, D., Krasner, H., and Curtis, B. A methodology for
studying software design teams: An investigation of conflict behav-
iors in the requirements definition phase. In Empirical Studies of
Programmers: Second Workshop, Ed. G. Olsen, et al. Ablex, Norwood,
N.J., 1987, pp. 83-99.

60. Warwick, D.P., and Lininger, C.A. The Sample Survey: Theory and
Practice. McGraw-Hill, New York, 1975.

61. Weinberg, G.M. The Psychology of Computer Programming. Van Nos-
trand Reinhold, New York, 1971.

62. Whyte, W.F. Interviewing in field research. In Human Organization
Research, Eds. R.N. Adams and J.J. Priess. 1960.

63. Zelkowitz, M., Yeh, R., Hamlet, R., Gannon, J., and Basili, V. Soft-
ware engineering practices in the U.S. and Japan. IEEE Comput. 17, 6
(June 1984), 57-66.

CR Categories and Subject Descriptors: D.2.9 [Software Engineer-
ing]: Management; D.2.10 [Software Engineering]: Design; D.m [Miscel-
laneous]--software psychology; J.7 [Computers in Other Systems]; K.1
[The Computer Industry]; K.6.1 [Management of Computing and Infor-
mation Systems]: Project and People Management; K.7.2 [The Comput-
ing Profession]: Organizations

General Terms: Software Management, Systems Design
Additional Key Words and Phrases: Case studies, domain knowl-

edge, empirical studies of software development, large systems design,
layered behavioral model, project communications, system require-
ments

ABOUT THE AUTHORS:

BILL CURTIS is a director in MCC's Software Technology
Program where he has directed research on software process
modeling and coordination, software design methods and tools,
computer supported cooperative work, intelligent user inter-
faces, and empirical studies of software development. He is
also an Adjunct Associate Professor in the Department of Man-
agement Science and Information Systems at the University of
Texas. Present address: Micraelectronics and Computer Tech-
nology Corp., P.O. Box 200195, Austin TX 78720.

HERB KRASNER manages the Software Process Research
Group in Lockheed's Software Technology Center. He has ex-
perience in large systems development, industrial/academic
research, and university teaching. His current research inter-
ests include: A1 applied to software engineering, design team-
ware, process modeling and evaluation, decision-based design
methods, and empirical studies. Present address: Lockheed
Research Division, Organization 9601, Building 30E, 2100 East
Elmo, Austin, TX 78744.

NEIL ISCOE is currently completing his Ph.D. in the Depart-
ment of Computer Sciences at the University of Texas at Aus-
tin. His research interests include domain modeling and analy-
sis, object-oriented design, and program generation. Prior to his
work in the MCC field study, he served as president of a soft-
ware development and consulting firm called Statcom Corpo-
ration. Present address: Department of Computer Sciences,
University of Texas, Austin, TX 78712.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

November 1988 Volume 31 Number 11 Communications of the ACM 1287

