
I N S I D E A S O F T W A R E D E S I G N T E A M :
K N O W L E D G E A ¢ O U I S I T I O N ,

S N A R I N G , A N D I N T E G R A T I O N
V

Diane B. Walz, JoyceJ. Elam, and Bill Curtis

ore than half the cost of the develop-
ment of complex computer-based
information systems (IS) is attrib-
utable to decisions made in the
upstream port ion of the software
d e v e l o p m e n t process; namely ,
requirements specification and design
[20]. There is growing recognition
that research on how teams actually
go about making requirement deter-
minations and design decisions can
provide valuable insights for improv-
ing the quality and productivity of
large-scale c o m p u t e r - b a s e d IS
development efforts [9, 12, 23]. Tradi-
tional models of group dynamics,
group decision making, and group
development are not rich enough to
thoroughly explain the real-world
complexities faced by software design
teams. Most of this research was per-
formed on tasks that were shorter,

less complex and did not require the extensive integration of knowledge
domains that characterizes software systems design [9, 12].

Knowledge is the raw material of software design teams. For complex pro-
jects, knowledge from multiple technical and functional domains is a necessity
[12]. Ideally, a software design team is staffed so that both the levels and the
distribution of knowledge within the team match those required for the suc-
cessful completion of the project. Because of knowledge shortfalls such as the
thin spread of application domain knowledge in most organizations, however,
this is seldom the case [12]. In general, individual team members do not have
all of the knowledge required for the project and must acquire additional infor-
mation before accomplishing productive work. The sources of this informa-
tion can be relevant documentation, formal training sessions, the results of
trial-and-error behavior, and other team members. Group meetings are an
important environment for learning, since they allow team members to share
information and learn about other domains relevant to their work.

Productive design activities need to revolve around the integration of the
various knowledge domains. This integration leads to shared models of the
problem under consideration and potential solutions. A software design team
seldom starts its life with shared models of the system to be built. Instead, these
models develop over time as team members learn from one another about the
expected behavior of the application and the computational structures required
to produce this behavior. This means that team members need to be speaking
the same language (or, at least, dialects whose semantics are similar enough to
facilitate communication and understanding) in order to share knowledge
about the system.

Knowledge acquisition, knowledge sharing, and knowledge integration
a r e significant, t ime-consuming activities that precede the development of a

design document. The purpose of this
article is to examine how these
activities unfolded over time inside an
actual software design team. Two
related questions with respect to this
team will be resolved:
1) How do the group members acquire, share,

and integrate project-relevant knowledge?
2) Do the levels of participation in these

activities differ across team members?
The f ind ings r epo r t ed h e r e

challenge some of the conventional
wisdom and common practices of
managing software design teams. An
initial caveat is that the design team
studied here worked in a research
and development environment where
knowledge acquisition, sharing, and
integration activities are accentuated.
However, to varying degrees, these
activities characterize most software
projects [12]. A better understanding
of the role and process of knowledge
acquisition, sharing, and integration
in software design has very real
implications for managing large soft-
ware projects, particularly in the areas
of planning, staffing, and training.

The Software Project:
An Overview
A software project involving the
development of a system to manage
persistent data within an object-
oriented framework, an object server,
was undertaken in 1986 at Microelec-
tronics and Computer Technology
Corporation (MCC). A single team of
individuals worked on the project. The
team was formed specifically for the
project, and, in general, the team
members had not previously worked
with one another. All participants were
either experienced software designers,
researchers, or both. No specific design
techniques or disciplined development
methodology was forced upon the
project team. Team meetings during
the design phase of the project (August

C O M M U N I C A T I O N * I f O P ¥ H I I A C M Octobe_r 1993/Vol.36, No.10 6 3

through November) were videotaped
by researchers as part of M C C ' s Soft-
ware Technology Program (STP).
Team members were aware they were
being videotaped. They reported that
the taping was not intrusive and did
not affect their behavior•

The design team met 19 times
from August th rough November. In
two of these meetings, technical in-
format ion was formally presented to
the team in seminar fashion by an
outside expert . The remaining 17
meetings were more tradit ional team
meetings. In early November, a for-
mal project plan, including specific
tasks and relevant stop and start
dates, was developed by the project
manager . Once this project plan was
in place, and the project shifted f rom
design to coding, videotaping of the
team meetings ceased. By February,
the project team had produced a
prototype of the object server and
two language interfaces, along with
relevant documenta t ion (functional
specifications and users' guides). No
formal measure of the quality of the
team's output was available. The ac-
tual system that was developed was
an exploratory prototype, and al-
though it was executable, it was not
installed for commercial use. The
customers stated they were, in gen-
eral, pleased with the project 's out-
come in supplying the organizat ion
with a valuable prototype and con-
siderable learning in a specialized
technical area.

A time line, shown in Figure 1,
describes project staffing and some
major events over the four months
dur ing which the 19 team meetings
were videotaped. The team members
are identif ied as eight designers (D l -
D8), a project manager (PM), and
one representat ive from the cus-
tomer group (C1). A br ief summary
of each o f 1:he 19 meetings is given in
the r ema inde r of this section•

Meeting # 1 of the design team was
held on August 6. The team was
given a one-page specification docu-
ment that described the object server
from the customers ' perspective• A
deadl ine of January 15 was given for
delivery of the object server• The dis-
cussion dur ing this meet ing focused
on areas that different members
found to be unclear in the specifica-

P r o j e c t O r g a n i z a t i o n and M a n a g e m e n t

tion document they were given. The
designers with the least experience
wanted to request that the customers
produce a specification that was
more clear and precise. The experi-
enced designers agreed the specifica-
tion was fuzzy, but stated that this
was fairly s tandard.

• '7 haven't seen any good ones and they
always come up with exactly the same
thing. This is just characteristic of them."

Exper ienced designers recognized
that the customers may not, them-
selves, unders tand the true nature of
the requirements at the beginning of
a project.

• "The big problem is they don't know
what they want. Articulating it is not al-
ways the problem, it's really knowing what
you want in the first place."

While this first meet ing primari ly
focused on the specification docu-
ment suppl ied by the customers, one
of the team members (D 1) presented
his ideas about the general concept
of an " informat ion base." His pre-
sentation was very interactive and
was in te r rup ted every 2 or 3 sen-
tences with questions f rom others. At
the end of the meeting, team mem-
bers agreed to write their questions
for discussion in the next meeting.

Meeting #2 was held on August 8.
Dur ing this meeting, the questions
concerning requirements p repa red
in advance by team members were
discussed. This discussion, however,
was not limited to requirements . In
fact, the g roup spent considerable
time talking about various technical
aspects of an object server (e.g.,
classes, objects, inheritance, mes-
sages, locking, concurrency). The
discussion in this meet ing was quite
lively, with team members in terrupt-
ing and disagreeing with one another
as well as expanding on their own or
others ' comments. Dur ing this meet-
ing, D4 stated he wanted to develop a
prototype of the object server in Pro-
log for (personal) educational pur-
poses. Team members were in-
formed that the project deadl ine had
been ex tended two weeks to
February 1.

Meeting #3 was held August 12.
The team invited two customers (C2
and C3) to at tend the meet ing to help
clarify the requirements . D1 had a

list of 23 questions he had assembled
from the previous two team meet-
ings. T h e r e were four general ques-
tions and 19 specific questions. Dur-
ing this meeting, the four general
questions and four of the 19 specific
questions were discussed. D1 re-
corded answers to the questions on
the typed document which contained
the questions, writing in the margins
and between lines. One of the cus-
tomers offered fairly elaborate "sce-
narios of use" to explain his views.

• "Let me give you a sense of the kind of
dynamics that we're talking about here

• "Let's put it this way, I stated it, and I
think I probably stated it wrongly . . .
What I would like is . . ."

These complete scenarios were not
recorded anywhere; only small frag-
ments of them were noted next to the
questions. The two customers had
several disagreements about the
overall approach to the task.

Meeting # 4 was held the next day
(August 13) with C2 and C3 to com-
plete a discussion of the design
team's questions. Again, C2 and C3
disagreed about many things, includ-
ing the specific language in which to
implement the object server. This
d isagreement can be clearly seen
with respect to one of the questions
being discussed:

Question: Are messages to be posed in the
same language in which the server itself is
written ?

• C3: "'no"
• C2: "yes"
• D1 records "Y (for now)"
• D4: "And we can have another meeting
without him (C3) where we can talk about
the language issue again."

Meeting #5 was held on
August 19. D3 was present for the
first time. The activities of the proj-
ect (so far) were described for D3,
including the disagreements between
C2 and C3 on ideas about the proj-
ect.

• DI: "Basically, we sat down, we de-
cided what it was that we wanted clarified
about the spec, made up a list of questions,
strapped C2 in a chair, beat him force-
fully with a list, required that he at least
verbalize something about what he was
t h i n k i n g . . . It became quite clear that the

4 October 1993/Vo1.36, No.10 I I O I M I I ~ U N I C A T I O I I S O I I Y I I E A ¢ I U

August September October

Y T Y
November

questions to I D3, D6 Customer review
initial customers _1_ prepare of revised
spec requirements requirements

D4 builds document
prototype

Design intent
document
produced

When staff members were assigned
D1
D2 D3
D4 D6
D8 D7
PM
C1

PM writes
commitment
statement

D5

intersection of the ideas of C2 and C3 are
very very small, at least as related to this
project . . . But, it has ceased to be our
problem--he's (C3) gone o f f . . .
• D4: "Is it really no longer a problem?
Is he no longer a customer officially?"
• DI: "Apparently"
• CI: "Well, given the wide diversions
among customers, we probably should feel
free to choose which customers we want,
who speaks loudest to us . . ."

During this meeting, the team mem-
bers learned that D1 had p repared a
prel iminary design intent document
and that D4 had developed a proto-
type of the object server in Prolog.

• DI: " . . . I then . . . created a docu-
ment expressing our preliminary design
intent, in a very informal way. Sort of
encapsulating the answers we've gotten
from (C2), plus the discussions that I had
with (D4). (D4) had been building a Pro-
log implementation of an object-oriented
environment, partly for his own under-
standing, and partly to see how, i f at all, it
related to this."

D 1 stated that he had sent the design
intent document to C2. He took C2's
lack of "complaints" as an indication
that he approved of the document.
Dur ing the meeting, D4 spent con-
siderable time explaining why Prolog
was an appropr ia te environment for
implement ing the object server as
well as describing the current state of
his implementat ion of the object
server. He requested that others read
his documentat ion, examine the

code, and work with the prototype in
o rde r to de termine if an extension of
the prototype could satisfy the speci-
fications. Few of the designers were
familiar with Prolog and were reluc-
tant to commit to implement ing the
object server in Prolog. Thus, the
issue of whether the object server
should be written in Prolog or some
other language remained unre-
solved. The meeting ended with a
request for D4 to provide team mem-
bers with a tutorial on Prolog.

During meet ing #6 on August 22,
D1 presented a plan for implement-
ing the "master information base" in
Ingres. The stated goal of the meet-
ing was to "educate" everyone on
Ingres so that the group could evalu-
ate its potential as a tool for building
the object server. A great deal of
technical information on Ingres was
shared. The team spent considerable
time compar ing how various require-
ments could be met in Ingres vs. Pro-
log. The team was beginning to con-
sider different designs and how
those designs could be implemented
using both Prolog and Ingres.

• D3: "An observation I'd like to offer at
this point is that you've gone essentially
from a set of requirements that aren't com-
pletely finished yet to a specific implemen-
tation without expressing things in a more
generic s e n s e . . , in the future we're
going to have a bit of a problem under-
standing what the original intent was be-
cause we've gone directly to implementa-
tion."

Figure 1. T ime l ine

An outside exper t was invited to
come and talk to the group about
Prolog on August 27 (Meeting #7).
He described some current research
on the subject in a fairly abstract
manner . The group pushed strongly
to br ing the discussion to issues di-
rectly relevant to the system they
were building. One of the issues dis-
cussed by the group concerned the
paging of Prolog facts between pri-
mary and secondary storage.

• Expert: Paging is done by the host oper-
ating system, it's not a Prolog-controlled

paging.
• D4: You could have Prolog write its
own facts out.
• Expert: Right, you could have commu-
nication between Prolog and some data-
base system.
• D4: That's the way I imagined doing it.
Do you think that's feasible?
• Expert: Yeah, sure. O f course, it's not
going to be very efficient but that is a good
first pass.

Meeting #8 on September 3 was
devoted to discussing a revised de-
sign intent document that had been
p repared by two of the designers.
Recall that D 1 had written the initial
design intent document. Dur ing the
meeting, it became clear that the
team members were not at all happy
with this document. It seemed to the
customer representat ive on the team
that the current document had not

¢OMMUMICATIONSOI~'VMIACldl October 1993/Vol.36, No.10 ~ S

Experienced designers recognized that the c u s t o m e r s

m a y n o t u n d e r s t a n d t h e t r u e n a t u r e

o f t h e r e q u i r e m e n t s at the beginning of a project.

captured much of what the design
team had ;agreed to earlier.

• CI: "We had a bunch of discussions
during last week and I thought we were
starting to get agreement but now that I've
read this I can't (see that agreement)."

The team spent a great deal of t ime
discussing exactly what should be
p repa red for the cus tomers - - shou ld
it be a requirements document , a
design intent document , or a func-
tional specification? This discussion
led to another detai led discussion of
requirements , which in turn led to a
detai led discussion of design issues•
Two impor tan t decisions emerged
f rom the discussions: first, a decision
was made to start f rom scratch in
p repar ing the design intent docu-
ment. Second, D 1 and D4 were given
the approval to continue to work on
the Prolog prototype•

Meeting #9 was held on Septem-
ber 5. A new outline for the design
intent document was distributed• As
the team members went th rough the
outline, requirements were discussed
further . The team discussed the dif-
ficulties in getting feedback f rom
cus tomers T h e extent to which the
team had moved toward developing
a design became very clear when the
customer representat ive on the team
indicated his intent to get feedback
f rom a large number of customers on
the design intent document being
p repa red by the design team.

• C1: Incidentally, when you give this to
the customers, I'm going to reexpand the
customer group from the original group.
• D4: Isn't it a little bit late? I mean after
all the preliminary design work that we
have done . . . It worries me that it's
going to start the whole thing all over
again.

During Meeting #10 on Septem-
ber 17, C1 informed the design team
that the customer group had re-
ceived the design intent document
and was working on a response• He

said the customers wanted a func-
tional specification p repa red in the
form of three users manuals: one
user manual for an applicat ion pro-
g rammer using Lisp/Flavors to inter-
face with the server, a second user
manual for an application program-
mer using Prolog/Biggertalk to inter-
face with the server, and a third user
manual for someone who wanted to
write the interface for another lan-
guage such as Objective C. At this
meeting, it was announced that the
prototype being developed by D4
would be ready to show to customers
as soon as D4 built an example case
and D 1 wrote a user manual• A good
par t of the meet ing was taken up by
D4 describing his prototype• At this
meeting, two basic design ap-
proaches were articulated: Plan A
and Plan W.

• D6: Should we start on Plan A or
Plan W? Because they're different design
issues, very different ones.
• PM: I don't think that we have enough
information right now to make a decision
• . . we need to come up with the process
cost for each plan and decide when we will
reconvene and make a decision on it.

Meeting # 11 was held on Septem-
ber 26. Al though the design team
was still waiting for the next round of
requirements from the customers,
they proceeded to write the user
manuals that C 1 out l ined in the pre-
vious meeting• T h e r e was much tech-
nical discussion on how to pe r fo rm
different tasks, such as handl ing con-
flicts su r round ing objects. Some
changes to the prototype were sug-
gested•

Dur ing Meeting #12 on Septem-
ber 30, the design team discussed the
requirements document received
back f rom the customers• Team
members were not h a p p y - - t h e y
were frustrated because the require-
ments still were not clear•

• DI: D3 and I basically decided that

rather than go through another iteration
of make up the questions, give the ques-
tions to customer, wait a month-and-a-
half for their response, we're simply going
to list things and say these are now imple-
mentation-defined.

Much of the meet ing was devoted
to trying to "read between the lines"
to de te rmine what the users really
wanted and discussing how they
could adapt the design approaches
they had been pursuing to do this.

• D3: What C2 wants is to be able for his
reusability project to work in Flavors en-
vironment. He doesn't want to comingle
languages; he just wants an information
base server that has many objects that is
accessible to his Flavors environment.
• PM: This (the document) does not say
it.
• D3: It doesn't say it, no.

Meeting # 13 was a cont inuat ion of
Meeting #12. Dur ing this meeting,
the team went th rough the customer
requ i rement document point by
point a t tempt ing to clarify and reach
a consensus o f unders tanding• T h e r e
were still unclear areas; there were
appa ren t contradictions• Since the
team did not get all the way th rough
the document , they agreed to meet
the next morn ing to continue•

During Meeting #14 on October
1, the design team cont inued their

jo in t review of the customer 's docu-
ment. They went th rough the docu-
ment, discussing items that were un-
clear, wrong, and so forth. They kept
track of matters they could not re-
solve and which needed to be ad-
dressed by the customer group•
Some of the discussion was very
high-level (. . . "different language
environments"); some o f it was very
detai led (" . . . We have to explicitly
follow the pointers in the applicat ion
code.")

At the start of Meeting #15 on
October 8, the PM distr ibuted a draf t
of a "Commitment Statement for the

6 October 1993/Vol.36, No.10 C O M M U N I C A T I O N S O F T H E A C M

Informat ion Base Server." D4 men-
t ioned C2's "revised expectations"
about sharing objects between lan-
guages. The team was not willing to
commit to this new requirement .
The re was not a lot o f controversy
involved with PM's draf t document.
Only minor wording changes were
suggested. Most of the discussion
refer red to fairly high-level issues
concerning the requirements: multi-
ple languages and the sharing of ob-
jects. The next steps for the project
were discussed, including the need to
develop a r igorously laid-out plan,
with specific tasks, dates, and so
forth.

Th ree members of the design
team had been working on a part of
the object s e r v e r - - a n object base
management system (OBMS). The
in tended format of Meeting #16 on
November 5 was to let each of these
members run through their presen-
tations and save questions for the
end. Only two of the designers were
able to present. The re was some de-
tailed discussion of issues such as
locking, notification, time stamps,
serializing problems, and atomic
operations.

Meeting # 17 occurred later in the
day on November 5. This meet ing
involved the discussion of a huge
PERT chart that the PM had pre-
pared. It was a plan for complet ing
the project tasks• The PM wanted the
team members to evaluate the plan,
especially to see if the start and stop
dates were reasonable. This was a
short meeting, barely 20 minutes
long. Much was still unclear and un-
resolved, as was evident in the longer
meet ing earl ier in the day. However,
with time runn ing out, the project
leader was obviously trying to get
beyond any fur ther discussion of
requirements.

The purpose of Meeting #18 on
November 11 was to discuss work
that had been done concerning data-
base issues. It was to be a continua-
tion of the discussion of database is-
sues from Meeting #16. At the start
of the meeting, D4 requested that C2
be invited into the meeting:

• D4: Can we get C2 here for this be-
cause something was raised during the
meeting we just had with him that struck
me as remarkable, and I think his new

P r o j e c t O r g a n i z a t i o n

notions of what he wants should be ex-
pressed directly to the group. I just spoke
to him and he sounded like he'd be willing
to come and talk at this meeting about that
certain topic.

C2 commented on what he wanted:

• C2: In the time frame between now and
February I, I want to focus my personal
activities on just . . . reusability issues
• . . I'm going to sit and ask questions
about what kind of objects do I want to
build in a Flavors environment. And I
think realistically, I or anybody else, am
not going to have a good idea of what re-
quirements there are until you've gone
through that, until you actually tried out
in a fairly large-scale experiment with a
set of objects trying to do some reusability.
• D4: I f you tell us in aprecise way what
you want to do with this thing, we can
build in the functionality right now.
• C2: That's indeed why I want to spend
the next few months f iguring out what
that precise way is, that's what I'm saying.

The design team discussed several
alternatives for providing the func-
tionality requested by C2. By the end
of the meeting, five possible ap-
proaches were identified. After C2
left, the discussion turned more tech-
nical about "how to do it" including
such issues as dangl ing pointers,
locking objects, locking subtrees, de-
leting objects, garbage collection, and
global backup and integrity of the
object store.

Meeting #19 was held on Novem-
ber 21. A functional specification
document that had been previously
p repa red by one designer was dis-
cussed. Much of the discussion was
related to the goal of trying to assure
the specification document was com-
plete. The team discussed whether
this project related to others at MCC,
the system, and how it would work.
Questions about the system were
posed, relative to D4's system and the
various documents describing the
server and the OBMS. The re was
some discussion about how to pro-
ceed. D4 discussed starting work "on
the languages": D3 suggested split-
ting the current functional specifica-
tion by category (e.g., maintenance,
storage, etc.) and assigning a cate-
gory to each team member who
would critically evaluate the docu-
ment and part icipate in fu ture dis-
cussions with that "bent." These as-

and M a n a g e m e n t OR
signments were made late in the
meeting. After this meeting, the
project shifted to implement ing the
specification•

Observations from the
videotapes
The observations presented in this
section are based upon our analysis
of the 19 design team meetings. We
first reviewed the transcripts of the
group meetings to qualitatively assess
the nature and level of knowledge
acquisition, sharing, and integrat ion
activities. Next, the transcripts were
analyzed in a s t ructured manner in
o rde r to obtain measurements which
might suppor t or deny our qualita-
tive assessments. A description of this
analytical approach is described in
Append ix A; fur ther details are pro-
vided in [24].

The design meetings were very
professional in nature. Interactions
were, for the most part, task-oriented
with lively discussions. Participants
were serious about their assignment
and appeared to be trying hard to do
a good job. In general , we identif ied
three general topics of discussion: 1)
background knowledge (technical
and application knowledge, espe-
cially knowledge that was new to
some or all team members), 2) system
requirements , and 3) design ap-
proaches.

The tradit ional approach to soft-
ware development recommends that
these topics be addressed in se-
quence. Projects are supposed to be
staffed to cover the di f ferent "knowl-
edge domains." I f necessary, early
t raining is supplied• The design team
begins its work by de termining re-
quirements, a l though dur ing this
time, designers may require "educa-
tion" about the functional area. After
requirements are de termined, de-
signers invent some reasonable de-
sign approaches to meet system re-
quirements and evaluate these
approaches, selecting one to be im-
plemented.

In the design project we studied,
we saw these three "steps." From the
descriptions of the team meetings, it
is clear that these steps were not ad-
dressed in sequence, they were not
independen t of one another , and
they did not appear to have clear
starting and ending points. Technical

COMMUNICATIONS OF THIE ACM October 1993/Vol.36, No.10 6 7

knowledge was introduced, ex-
changed, and evaluated according to
its ability t,o meet requirements in the
context o f one or more specific de-
sign approaches. New information
about requirements was evaluated in
the context o f design approaches
framed in terms of technical and
application knowledge. Presentations
about new technology were discussed
in light of various design approaches
and whether or not such approaches
met requirements. Thus, new infor-
mation was sought, filtered, and inte-
grated in context.

Very early in the project
(Meeting #5), the team began to
focus on what they called a design in-
tent document--a document for cus-
tomers that said "this is what we un-
derstood '.you to mean and this is
what we intend to do about it." The
team also was introduced to the pro-
totype being developed by D4, which
provided a very concrete design for
meeting requirements. Beginning in
the middle of August, discussions
related to technical knowledge, re-
quirements, and design became
closely intertwined. We did, however,
see shifts over time in the team's
focus with respect to these three top-
ics (see Figure 2). In the early meet-
ings, the team focused on learning
what they needed for producing a
design and identifying the require-
ments of the system. Discussions,
however, generally related to as-
sumed, or "trial" design approaches.
This emphasis was evident through
meeting #7, in late August. Around
this time, the emphasis on new tech-
nical knowledge appeared to lessen
and the focus o f the team was one of
getting a clear handle on require-
ments and relating these to specific
design approaches. In fact, design
approaches discussed in previous
meetings appeared to have been so-
lidified by the middle of September
and were referred to by names (e.g.,
"Plan A") for the first time, starting
in meeting #10.

After meeting #10, the team was
still attempting to get requirements
clarified. The discussion of require-
ments f rom this point, however, was
rooted in 1:he context of specific de-
sign alternatives ("Plan A vs. Plan
W"). As can be seen in meeting #12,
the team was close to reaching its

P r o | e c t O r g a n i z a t i o n and M a n a g e m e n t

limit on accepting additional require-
ments from customers. By
meeting #16 (early November) the
process of actively determining re-
quirements was simply 'shut down,'
even though requirements were still
not entirely clear, either to the de-
signers or the customer representa-
tive. The team's focus from this point
is on the various design alternatives,
discussed in the context of known
requirements. It appeared that the
shifting of the team's attention from
requirements determination to de-
sign activities was precipitated by
members ' awareness o f time and
deadlines.

The phenomenon of 'shutting
down' in other software design proj-
ects was observed by Gersick [14],
who noted that it tended to occur
near the halfway point between a
project's starting date and its dead-
line. It is interesting that the shift
observed here, in early November,
corresponds to the midway point be-
tween project inception in early Au-
gust and the February 1 delivery
deadline.

We have classified our observa-
tions of this software design team
along three dimensions: acquiring,
sharing, and integrating the neces-
sary knowledge for the design task
(getting up to speed), integrating the
knowledge into a shared under-
standing of the application and the
design (creating the team memory), and
the role of individuals in these activi-
ties (the players). The analysis of the
transcripts from the project has
yielded some interesting observa-
tions in these areas, suggesting that
some of our traditional approaches
to managing the software design
process may need rethinking.

Getting up to Speed
From Meeting # 1 through
meeting # 16 in early November, the
team members focused on obtaining
both technical and requirements-
oriented information. The junior
designers were appalled at the amor-
phous nature of the initial require-
ments document and wanted to de-
mand something with more specifics.
The experienced designers recog-
nized that customers "don't know
what they want" and the fuzziness in
their requirements document was

common. Customers, like designers,
needed to go through a learning pro-
cess in order to clarify the require-
ments. Once this was recognized, it
was not surprising that it took so long
to gain closure on the requirements.

Determining requirements was
also complicated because different
customers had different require-
ments. The design team clearly
wanted to avoid this complication by
being responsible to a customer (or
customer group) that shared the
same view of the requirements. The
customer they chose was C2 and
much of their thinking was shaped
by what C2 wanted. The design team
was quite alarmed when the cus-
tomer representative on the design
team wanted to open the discussion
of requirements to a larger customer
audience once the project had be-
come established.

On the technical side, the team
actively sought information about
the object-oriented paradigm and
the relevant characteristics o f various
database environments. From the
meeting discussions we can infer the
kinds of activities in which they en-
gaged outside of the project meet-
ings: tracking down and reading
documentat ion and research papers;
consulting with experts (both inter-
nal and external to MCC), technical
specialists, and vendors. Even during
the first meeting, it is obvious that
team members had "done home-
work" before assembling.

During the meetings, team mem-
bers exchanged knowledge through
discussions. Individuals often asked
one another direct questions. Team
members appeared eager to supply
their own expertise where relevant.
We observed numerous examples of
knowledge exchange in a classic dia-
lectic process, in which a statement of
position was criticized as a catalyst for
a discussion process whose outcome
involved individuals accepting new
knowledge or revising beliefs.

We observed a large amount of
conflict in the meetings we studied.
On average, about 16% of all state-
ments were made in disagreement or
challenge to another. While we did
observe some cases o f disagreements
that appeared to be the result of in-
compatible goals, most of the conflict
that occurred during the design team

6 8 October 1993/Vol.36, No.10 C O M M U N I C A T I O N S OF THE ACM

meetings was dialectic, or educa-
tional, in nature. This conflict was
not personal, it did not appear to be
hostile or antagonistic, and individu-
als did not appear to be dis turbed by
these interactions; in fact, they
seemed to be learning from one an-
other.

The design team was very deliber-
ate in choosing the application do-
main and technical knowledge
needed to complete the design task.
While team members may have ini-
tially had their own ideas concerning
the mapping between the require-
ments of the application and a de-
sign, a few members of the team suc-
ceeded in getting the team to focus
on only a small subset of possible
mappings. The group seemed to
only recognize and assimilate techni-
cal knowledge seen as directly rele-
vant to this subset. Requirements
were also viewed within the bounda-
ries of this subset as well. Around
meeting #16 (early November), the
group began to focus almost exclu-
sively on design issues. After this
point, the group seemed to "close its
mind" to any new knowledge.

However, even before this point,
we observed the reluctance of the
group to significantly shift its current
thinking. Two analysts were added to
the project at relatively late dates:
one in late September and one in

early November. Both analysts were
exper ienced professionals who were
brought into the project because they
possessed expert ise in specific areas
that was lacking on the team. On
both occasions, the addi t ion of an-
o ther analyst appea red to have little
effect on the direction of the project.
Both analysts were initially given in-
format ion in tended to br ing them up
to speed regard ing the history and
status of the project. Nevertheless,
work seemed to progress as be-
fore. Potential design approaches
were not al tered (or even considered
for alteration) after the new analysts
were added to the team.

Implications for Management
Knowledge acquisition, sharing, and
integrat ion are all activities that en-
able the software design team to
learn what it needs for producing an
appropr ia te design. Seldom are these
activities explicitly accounted for in
the design phase. Consequently, the
time required for design is often seri-
ously underes t imated [12]. The
length of t ime that a team spends in
its learning phase depends on the
breadth and dep th of knowledge the
team members br ing to the project.
It is also affected by the extent to
which customers unders tand the re-
quirements of the project. In the
software design team we studied,

Figure 2. Shifts in emphasis over
t i m e

there was some relevant technical
knowledge but little application-
domain knowledge, and customers
were unclear on requirements. As a
result, over 75% of the time devoted
to the design phase of this project
was spent in learning. Al though the
team had not learned everything it
needed to know, time pressures
forced it to move ahead with what-
ever knowledge it had gained. This
insight can help project managers set
more realistic estimates for the de-
sign phase of a project by including
the requi red learning curve in the
equation.

Also, dur ing the learning phase, it
is impor tant to facilitate the open air-
ing and exchange o f ideas across all
relevant domains of expertise. Proj-
ect managers should not be too con-
cerned dur ing this phase if the team
does not demonst ra te visible prog-
ress toward developing design speci-
fications, since it is generat ing the
raw material necessary to move to the
next phase of actually producing a
design [14]. It is only if the g roup
fails to move out of the learning
phase midway through the project
that overt actions should be taken.

Our observations also indicate the

¢ O M M U N I C A T I O N I i OF TH I i ACM October 19931Vo|.36, NoA0 ~

C o n f l i c t w a s t h e m e c h a n i s m f o r

f a c i l i t a t i n g l e a r n i n g .]! w a s not a debilitating
factor needing to be suppressed in the software design team.

importance o f including relevant
team members from the beginning
of the project. I f new members (and
their relevant expertise) are added
after the g roup has come to closure
in its learniing phase, the group may
be reluctant to deal with the new
knowledge they br ing to the team.
Thus, knowledge at this point may
not be incorpora ted easily into the
group 's work. I f new members must
be added dur ing the project, project
managers should take special care to
ensure the knowledge brought by
these members gets integrated into
the team's cur rent thinking.

T h e r e are implications for train-
ing as well. Conventional approaches
to software design allow for t raining
of team members in technical meth-
ods or tools, as necessary. Usually,
this is done at the beginning of a
project. Often, designers are physi-
cally removed from their day-to-day
work envi ronment in o rde r to re-
ceive formal training. And typically,
this t ra ining is separate and indepen-
dent o f the actual project activities.
In our study, the software design
team was involved in two formal
t raining s e s s i o n s i o n e involving
database technology and one on
P r o l o g I t h a t were held on-site.
These formal sessions did not seem
to have much impact, pr imari ly be-
cause the training did not focus o n

those things that were especially rele-
vant for the project. When team
members are immersed in a design
activity, they are often unable (or
unwilling) to acquire knowledge that
cannot be immediately put to use. We
recommend that formal t raining ac-
tivities, when appropr ia te , be inte-
gra ted into project activities ra ther
than remain independen t (just in time
training). One way to achieve this
might be to have a technical t ra iner
part icipate in a few design meetings
so the training can be custom-
tailored to the project.

Conflict was the mechanism for

facilitating learning. I t was not a de-
bilitating factor needing to be sup-
pressed in the software design team.
In fact, we recommend considerat ion
of formal techniques for managing
conflict to help with knowledge ac-
quisition, sharing, and integration.
Two techniques for p rogramming
conflict into organizational decision
making processes have been sug-
gested: the devil's advocate decision
p rogram (DADP) and the dialectic
method (DM) [6, 8]. In the devil's
advocate method, an individual or
group plays the formal role of critic
in o rde r to help a decision maker test
the assumptions and the logic of the
ult imate decision. The dialectic
method pits a thesis against an an-
tithesis. Most modern legal systems
today are formal dialectic processes.
Two sides exist, each with champi-
ons, and cases are made for each.
This method is especially appropr i -
ate when a g roup is a t tempt ing to
define problems and generate the
necessary informat ion for decision
making under conditions of uncer-
tainty, or where there is more than
one way to solve a problem [7].

Formal methods for the use of dia-
lectic techniques for strategic plan-
ning are presented by Mason [17,
18]. The strategic assumption surfac-
ing technique (SAST) offers a
method by which facilitated groups
can identify and resolve under ly ing
differences and similarities. Thus, it
seems especially suited to heading off
communicat ion problems that may
occur in such knowledge-intensive
tasks as software design.

We recommend that at least o n e

person within the group, perhaps the
PM, serve in the capacity of a facili-
tator of p r o g r a m m e d conflict. This
individual would receive formal
t raining in the DADP or the SAST as
well as training in dialectic thinking
and philosophy. The methods may
need to be adapted somewhat to take
into account the informal nature of

the group interactions. We believe
that formalizing these methods to the
management of software design
teams represents a potential area for
significantly improving software de-
sign quality and productivity.

Creating the Team Mem0w
The team sought clarification of the
requirements contained in the initial
specification document by address-
ing a number of questions to their
customer representatives. Interest-
ingly, the customers were not willing
to provide written answers, but
agreed to a t tend meetings to be in-
terviewed (specifically meetings #3
and #4). Thus, most of the informa-
tion given to the team concerning the
nature of the requirements of the
system was given orally. And, inter-
estingly, a large amount of this infor-
mation was lost. A very influential
customer (C2) a t tended three of the
team's meetings, dur ing which he
spoke a great deal, usually in re-
sponse to designers ' questions. In
fact, this customer offered many
elaborate scenarios of use to explain his
views, needs, and preferences. While
the designers listened attentively,
made comments, asked questions,
expressed disagreement , and other-
wise interacted with this customer,
very little of the informat ion con-
tained in the interactions was re-
corded.

In one interchange, the designers
asked C2 to priori t ize three distinct
approaches which seemed to be indi-
cated by the initial specification. C2
did this within a very long discussion
which included detai led and elabo-
rate scenarios as well as modifications
and clarifications of these three ap-
proaches. After this discussion, the
designer taking notes wrote simply:
"2-3-1." In fact, the documenta t ion
p roduced by the scribe designer dur-
ing the two lengthy meetings with C2
(meetings #3 and #4) consisted of
less than 150 words written on the

70 Octobcr 1993/Vol,36, No.10 I ~ O M l l 4 U N O e A T I O N I O F T H m A ¢ M

design team's copy of the question
sheet• This documenta t ion was used
by the designer who took the notes to
help produce a first draf t of a design
intent document. However, as was
apparen t from Meeting #8 , when
two other designers from the team
took over the product ion of this doc-
ument, even the small amount of in-
formation here seems to have been
lost.

It was clear from our observations
that the designers were learning
from C2, gaining insights into his
needs, and at tempting to relate these
to possible design alternatives. The
process of interviewing C2 served to
br ing out information that was ab-
sent from formal requirements and
was elusive, in that it was difficult to
get from any direct source. However,
it was also clear that the designers
were not always able to integrate all
of the new information they re-
ceived. The designers were not jus t
trying to accept information f rom
C2. They were at tempting to inte-
grate this information into their own
working model of the design task. In
the beginning, these models were
very sketchy [1]. Consequently, it was
difficult to integrate requirements
information into what they current ly
knew and unders tood: the informa-
tion did not "stick," since they had
yet to develop adequate "hooks" for
it in their unders tanding of the prob-
lem.

The process of acquiring informa-
tion and integrat ing this information
was driven by design bites. The de-
signers were only capable of integrat-
ing a design bite's worth of informa-
tion into their current unders tanding
of the design task, based on the abil-
ity of the new information to "attach"
to that a lready integrated into the
design• Therefore , a large amount o f
information from C2 was ei ther lost
or unnoticed. The discussions in
later meetings often went back to
"what C2 said," or "what C2 would
say now." Some of the information
provided by C2 had to be painfully
(and only partially) reconstructed by
the designers at later stages. Some of
the information he provided in these
earl ier meetings was solicited again
in a later meet ing to which he was
invited. A good example of this can
be seen with respect to the issue of

P r o j e c t O r g a n i z a t i o n

reusability. C2 was mainly interested
in how reusability could be enhanced
through the use of an object server.
He made this clear in Meeting #3.
Later dur ing Meeting #12, D3 reit-
erated what he believed C2 wanted
out of the object server. Since this
requi rement had not been captured
in any design document , no one else
on the design team seemed to pay
much attention to it. In Meeting # 18,
D4 states "I think his (C2's) new no-
tions of what he wants should be ex-
pressed directly to the group." In
fact, these were not new notions;
what he said he wanted was almost
identical to what he stated in Meet-
ings #3 and # 4 and what D3 had
perceived to be his desires back in
Meeting #12.

We also observed cases in which
design decisions became lost, or were
forgotten, from one meeting to the
next. Situations in which previously
made decisions were quest ioned
were fairly common. The following
three episodes illustrate this phe-
nomenon.

EPISODE 1: Meeting #5, August 19

PM relays the news that the accep-
tance test requested by C2 involves
the ability to run a p rogram that pro-
duces Nassi-Shneiderman diagrams.
This p rogram is written in Lisp. The
design team has been less than en-
thusiastic up to this point of bui lding
the object server so that Lisp pro-
grams can be run. They are very re-
luctant to accept this as a valid test
for their system.

• CI: "A test of the product. He wants to
be able to run this Nassi-Shneiderman
program."
• D1 : "See, I don't take that seriously, I
really don't."
• D4: "Why didn't you tell us i f you
meant us to take it seriously. I mean why is
it just mentioned in passing?"

The team has ei ther not remem-
bered (or they did not take seriously)
C2's comments from a specific sce-
nario he gave them in Meeting #3 on
August 12.

• C2: " . . . So what happens is maybe
you want to implement a Nassi-Shneider-
man chart so (D4) goes off and he does
some magic with Lisp and whatever and a
week later the Nassi-Shneiderman classes

and M a n a g e m e n t 0 1 7

get in there and they'll largely stay un-
changed for a long time "

EPISODE 2: Meeting #9, Septem-
ber 5
D3 has worked on a version of a re-
quirements document. C1 points out
that a major aspect of the project
concerning its database functionality
has been left out.

• C1: " . . . what this is is an extension of
the normal capabilities we've come to ex-
pect of databases, in terms of reliability,
and failure recovery."
• D3: "That's what we're doing?"
• C1 : "That was part of it."
• D3: "Not in any document I've ever
read. I had three documents relating to
• . . "

• C1: "That's the odd thing•"

EPISODE #3: Meeting #12, Sep-
tember 30

• D4: "And if you store that, and the hi-
erarchy changes in any way, you have to
search through everything stored to
reresolve those static references. I thought
I won that argument a long time ago."
• D1 : "Yes, but you did that in the back-
ground. The other problem--the problem
with doing it your way is that in order to
f ind the code here, you have to search
every method of every single object all the
way up, which makes . . . "
• D4: "That's logarithmic. Everything
else is everything. I f you're talking N ver-
sus log N . . . "
• D1 : "Logarithmic?"
• D4: "Yes, the one path or set of paths
up instead of the whole thing. That's how
I won the argument five tapes ago."
• DI: '7 don't think we ever did it on
tape, I think we did it in my office."
• D4: "No, we did it here, and you came
to a point where you sort of said 'Oh:
Even after that, I remarked, you actually
agreed you were wrong and admitted you
do that occasionally. I remember it quite
vividly."
• DI: "Good for you. Well, I don't re-
member it, but I'll take your word for it."

One possible explanat ion for de-
sign team "forgett ing" is that every
team member was not present at
every meeting, and some designers
were added to the project fairly late.
For instance, D3 missed the first two
weeks of the project. Because of this,
he missed many relevant conversa-

COMMUNICATIONS OPTHll AGM October 19931Vo1.36, No.10 i ~

tions covering significant aspects of
the project ,which were discussed but
not clearly documented. Participants
in the early meetings understood
these issues but D3 did not. This
hampered him when he was put in
charge of preparing a revised re-
quirement document and highlights
the difficulty o f bringing new team
members "up-to-speed."

Sometimes the design team could
not "remember" some information
because they considered it unimpor-
tant. Since t]he design team was lean-
ing against implementing the object
server in a Lisp/Flavors environment,
they ignored relevant information
such as the fact that the object server
must be able to run a specific pro-
gram in Lisp. Even when individuals
remembered that a decision had
been made, they often found it diffi-
cult (if not impossible) to recreate the
logic, or the rationale, behind the
decision ("Why did we do it this way?").

Another aspect of the design
meetings that contributed to a diffi-
culty in "remembering" was the com-
plexity and lack o f structure in the
discussions. Design is an intense cog-
nitive activity and the project we ob-
served for this study was no excep-
tion. In general, the discussions
within the meetings were informal.
Issues were not discussed hierarchi-
cally, but in a free-flowing, unstruc-
tured string of quasirelated episodes.
A discussion of one issue seemed to
trigger the discussion of new issues
(see Appendix B for a detailed listing
of the issues discussed in a fairly rep-
resentative meeting). It was reported
in [21] that design teams appear to
have limited attention spans. The
design team studied here did not at-
tend to issues at great length. Many
times, they never came to a decision
on what to do about an issue, but
were distracted from the issue, mov-
ing on to other topics. It appeared
from our analysis that the group was
aware of an unresolved issue only if it
was raised again at some later time.

These team memory limitations
were enough of a problem that the
design team eventually requested
access to the videotapes of their pre-
vious meetings. However, even
though the}, were granted access to
the tapes, they decided it would be
too time-consuming to view them.

Pro |ec t O r g a n i z a t i o n and M a n a g e m e n t

Implications for Management
Design teams have historically been
expected to manage their collective
"memory" in an ad hoc manner. The
design team's formal memory is rep-
resented by its trail o f formal docu-
mentation, such as functional specifi-
cations and users' manuals. An
increasing number of tools exist to
help design teams manage their for-
mal memory: CASE tools, document
preparation tools, and modeling
software provide help in this area by
managing the formal record of the
output o f the various design stages.
They do little, however, to provide a
record of the process of the design.

Prototypes provide limited help in
this area since they are products o f
the design team's consensus model o f
the customers' requirements. They
represent output (a model of a sys-
tem), not process. A prototype can
trigger a conversation which includes
customers' scenarios of product use,
but does not provide a means to cap-
ture a priori the information from
these conversations.

The team's informal memory is
much more complicated and more
difficult to manage. It consists of the
material scrawled by individuals in
the margins of their personal copies
of formal documents, the notes on
the blackboard on any given day
("Do Not Erase"), and the thoughts
and impressions of the individual
team members themselves.

Software design teams could bene-
fit f rom tools that are intended to
record and capture the process of
software design. Such tools would
provide methods for capturing design
rationale [3, 5, 19] including scenarios
of use as supplied by customers or
suggested by designers. Groupware
tools that allow the capture, storage,
and retrieval of the design process in-
formation have been suggested for
software process management [11,
15, 16]. Such tools may use the de-
sign process as input. For example,
on-line conversations about various
issues and videotapes o f design meet-
ings, can be stored and processed so
that information can be retrieved.
Such tools could also keep track of
key issues raised during group meet-
ings and the position, if any, taken by
the group with respect to these is-
sues.

Relative Participation by Team
Members
It was reported in [21] that team
members in design groups partici-
pate unequally. In a study of 17 large
projects, it was found that the early
phases o f software design projects
were dominated by a small coalition
of individuals, occasionally even a
single individual [12]. Our observa-
tions are consistent with these find-
ings. We identified 3 individuals out
of the 10 members o f the software
design team who seemed to domi-
nate the design process. One of these
individuals was the customer repre-
sentative, C 1 and the others were two
designers (D 1 and D4) who emerged
as leaders o f the design effort.

C1 was a customer representative
with a rich technical background and
excellent communication skills who
used examples and scenarios of use
to convey information about the cus-
tomers' needs and preferences effec-
tively. He drew on his technical back-
ground to frame these examples and
help the designers to understand the
system requirements.

D1 and D4 were the only project
team members who attended all of
the meetings. They participated
more frequently than other team
members. In fact, counts of individ-
ual speech acts from the transcripts
of the meetings reveal that these in-
dividuals actually spoke more often
than any of the others by a factor of
nearly 2 to I (see Figure 3). D1 and
D4 worked hard, both in and out of
the group meetings, and performed
more tasks than they were explicitly
asked to do. They routinely con-
tacted outside experts, searched for
relevant research papers, and dis-
cussed unresolved issues with the
customers. They both developed
plans for addressing the design (not
all of which panned out) and they
presented these suggestions to the
team, after discussing them with
the PM.

D 1 impacted the team effort both
technically and administratively. As
described previously, he tried to seek
out and integrate new technical
knowledge into a framework for pro-
ducing the design. He also influ-
enced the team process by taking the
initiative in the administration of
team duties. He routinely volun-

72 October 1993/Vol.36, No.10 ¢ O N N U N I C A T I O N S O F T H I I A C M

teered to coordinate g roup activities
(assemble lists of questions, solicit
input and produce documentat ion)
and he actively led the group (in
terms of both meeting and project
management) for several of the
meetings.

D4's influence on the project was
largely technical. He exhibited con-
siderable technical expert ise and
other team members regularly
sought his help and defe r red to his
opinions. He seemed to be some-
thing of a loner, not especially inter-
ested in reaching consensus. Without
being overpowering, he would do his
own work and offer the results to the
g r o u p - - i t was D4 who built the Pro-
log prototype in the first few weeks
of the project. When D4 initially sug-
gested building the prototype, the
PM was not supportive. But D4 built
the system anyway, explaining that
he wanted to do this as a learning
tool. Interestingly, the Prolog proto-
type that he built became an impor-
tant piece o f the finished system.

D1 and D4 formed a very influen-
tial coalition over the course o f the
project. They were influential not
only in de te rmining the overall de-
sign approach and its subsequent
decomposit ion, but also in the alloca-
tion of responsibilities. D4 ended one
of the meetings by reading f rom his
notes (written on a Styrofoam coffee
cup!), where he summarized the
project status and suggested assign-
ments for team members; the others
assented.

We surveyed the team members to
learn about their backgrounds,
knowledge, and expertise. Interest-
ingly, D1 and D4 had the fewest
number o f years of professional ex-
perience (2 and 1 years, respectively),
al though they had a number of years
of p rogramming experience (7 and
11) in a variety (5 and 20) of lan-
guages (see Figure 4). We infer that
most of their experience was in an
academic or personal comput ing
environment . We also asked each
team member to identify (for 12
project-related knowledge areas)
those individuals on the team who
they felt were knowledge resources
in these areas. We studied the re-
sponses to see if there were any
knowledge-related differences be-
tween the emergent leaders (D1 and

D1 D2 D3 D4 D5 D6 D7 D8 PM Cl

D1 D2 D3 D4 D5 D6 D7 D8 PM Cl

30.

2 5

20

15

10

5

0

i ' ~ Number of votes from others

8 1 Number of knowledge areas
represented

D1 D2 D3 D4 D5 D6 D7 D8 PM C1

D4) and the other team members.
We recorded the number of times
each team member was ment ioned
by others as being a knowledge re-
source. We also noted the number of
knowledge areas for which each per-
son received votes. This is a measure
of the breadth of an individual 's ex-
pertise. See Figure 5 for a summary
of these results.

Plgure S. N u m b e r o f s t a t e m e n t s
p e r m e e t i n g

F igUre 4. Years o f p r o f e s s i o n a l
serv ice

F igure S. Exper t i se as p e r c e i v e d
by t e a m m e m b e r s

COHHUNICATION| O I I T I l l ACH October 1993/V01.36, NO.IO m / ~

have historically valued both technical and communication skills
in software designers. W e s u g g e s t o r g a n i z a t i o n s

p u t p r o g r a m s i n p l a c e f o r d e v e l o p i n g

t h e s e s k i l l s in more depth.

Interestingly, D4 was mentioned
most often by teammates as a knowl-
edge resource, receiving 30 votes.
Also, D4's votes covered 7 knowledge
areas, implying that he had a breadth
of knowledge as well as depth and
expertise. D1 and C1 (the customer
representative) were also mentioned
in 7 knowledge areas. No one else on
the team received votes in more than
7 knowledge areas.

Implications for Management
The conventional wisdom for hiring
programmers and designers values
experience, where experience is
often equated with knowledge. Of
Boehm's [2] five basic principles of
software staffing, three are especially
related to knowledge and expertise.
The basic premise of The Principle of
Job Matching involves fitting the task
to the skills and motivations of the
available staff. Operationally, how-
ever, this usually involves matching
individuals' technical experience
(software environments, operating
systems, databases, programming
languages, application areas) with
the technical requirements of the
task. The Principle of Team Balance
suggests that an appropriate mixture
of knowledge, technical skills, and
personality characteristics are espe-
cially important. The Principle of Top
Talent recommends the use of fewer
and better people.

In the design team we studied, the
two individuals who were identified
as the most knowledgeable were also
the least experienced. This supports
the findings of other studies that
breadth of experience is a better pre-
dictor of individual performance
than years of experience [13, 22]. In
spite o f this,, years of experience is
often used as a key input into staffing
decisions.

We suggest that a better approach
would be to develop a "knowledge

profile" for each member of the soft-
ware design and programming staff.
The Principle of Job Matching could be
operationalized by matching knowl-
edge profiles of staff members to the
knowledge profile of a particular
project. These knowledge profiles
could also be used to ensure, as much
as possible, that requisite knowledge,
skills, and abilities are appropriately
distributed among the members of
the team, in accordance with the
Principle of Team Balance. Where this
is not possible, management would
need to be aware of any knowledge
gaps that need to be addressed.

There were 10 members o f the
design team that we studied. How-
ever, three members dominated its
functioning. They dominated not
only because they were the most
knowledgeable on the team, but also
because they had the skills necessary
to exchange and integrate knowl-
edge. I f the Principle of Top Talent had
been adhered to, a design team with
fewer individuals might have been
adequate. It is often difficult to iden-
tify, a priori, who the key team mem-
bers will be. Slack, in the form of
extra members, is necessary in order
to increase the probability that key
contributors are included. Identifica-
tion and management o f knowledge
profiles could help reduce this need
for slack. An organization may, how-
ever, choose to include a few extra
members on a design team in order
to move them up the learning curve.

We have historically valued both
technical and communication skills in
software designers. We suggest that
organizations put programs in place
for developing these skills in more
depth. On the technical side, individ-
uals with the intelligence, talent, and
desire should be exposed to a variety
of knowledge areas through appro-
priate task assignments and formal
training. On the communication

side, we recommend that special at-
tention be paid to developing team
building, negotiation, and teaching
skills. Due to the abundance and
importance of verbal information
received by team members, it is im-
portant that team members develop
good listening skills and the ability to
translate this verbal information into
a form that can later be retrieved.

Software designers must be knowl-
edgeable in the application domain.
The software design team in this
study, like many others, had design-
ers who were knowledgeable in the
techniques of computer science.
They lacked some knowledge in the
application domain (i.e., object serv-
ers). Consequently, significant learn-
ing costs were incurred by this team.
Through this experience, however,
these designers acquired knowledge
that could only be obtained by going
through this learning process.

Conclusion
Observing a software design team
closely has allowed us to gain some
important insights into the design
process. We observed needs that
were not met within the project life
span. We were surprised to see how
important context-sensitive learning
was to the design process. We were
surprised at how much information
was presented to the team and never
captured. We were surprised to see
that the requirements determination
did not end cleanly, but was a lengthy
process that seemed to "shut down"
based more on project timing than
on achieving a full understanding of
the requirements. And we were also
surprised at the extent to which
knowledge and expertise was the
force behind participation and lead-
ership o f the design process.

These observations, however, are
less surprising if we acknowledge the
criticality of knowledge acquisition,

7 4 October 1993/Vol.36, No.10 C O M M U N I C A T I O N S O F T H l l A C M

sharing, and integration activities.
Adopting a knowledge perspective
leads to some specific recommenda-
tions for managers of software de-
sign efforts. One obvious recommen-
dation is to increase the amount of
application domain knowledge
across the entire software develop-
ment staff. Assigning one or two in-
dividuals with deep application do-
main and technical knowledge to a
design project can significantly re-
duce the learning time involved.
Another recommendation is to ac-
tively promote the acquisition, shar-
ing, and integration of knowledge
within a design effort through team
facilitation techniques and to for-
mally recognize these activities by al-
locating time to them. Explicitly
managing conflict as a way to facili-
tate learning has been proposed as
one way of doing this. Finally, it is
also important to recognize that
much of the information that needs
to become part of the team's memory
is not captured formally, particularly
in standard documentation. New
computer-based tools are needed to
easily and unobtrusively capture this
process-based information.

The software design project exam-
ined in this study was an exploratory
R&D project undertaken within a
research organization. An unan-
swered question is the extent to
which we would observe the same
types and levels of activities related to
knowledge acquisition, sharing, and
integration along with the same pat-
terns of participation and leadership
in software design teams engaged in
commercial application develop-
ment. It seems liked that the fre-
quency of behaviors we observed ex-
ists on a continuum dominated by
how much is already known about a
software product. For projects in-
volving a new application area in
which considerable learning is re-
quired to produce a design, it is likely
that our observations and findings
would be very similar. In projects
building well-understood products
requiring little learning, our observa-
tions might have been quite differ-
ent. A broader range of empirical
research on software design teams is
necessary to determine how far our
observations and findings generalize
to projects in other organizations.

P r o j e c t O r g a n i z a t i o n and M a n a g e m e n t

Acknowledgments
The authors wish to acknowledge the
support of the Software Technology
program at Microelectronics and
Computer Technology Corporation
in Austin, Texas. We thank Jef f
Conklin and Herb Krasner for vid-
eotaping the meetings, and extend
special thanks to Herb Krasner for
invaluable input throughout this
project. []

A p p e n d i x A:
Transcr ip t Coding
M e t h o d s
The transcripts of videotaped group
meetings were broken Into speech acts
(by speaker) which were then classified
according to the following predefined
coding scheme:

Expository
--offers opinion
--offers clarification
--agrees
--disagrees
--modif ied previous position

Acquisitive/Facilitative
-- interprets
--asks

Other

To test the interrater reliability of the
coding scheme, a subset of the tran-
scripts was independently coded by
three employees at the research site.
None of these individuals had partici-
pated in the design project or in this
research project, and all had experience
with classification of interaction data
according to coding schemes. For these
subsets, the average percentage Of in-
terrater agreement was 66%. Sources of
discrepancies did not appear to be sys-
tematic across coders.

A p p e n d i x B:
E x a m p l e I s s u e s
The following issues were addressed (in
chronological order) in meeting #8, Sep-
tember 3.
Agenda
Staffing
Agenda
Formalize design intent document

Time frame for competing
Changing, dynamic nature of require-

ments
What is this document called?

Quality Of draft of requirements docu-
ment

2

Project status
Suggest change to agenda

Discuss requirements
Goals/nature of requirements documen-
tation
Project history, background
Text processing, sharing files for project
management
Document history--who wanted this
document?
Schedule--can we wait 2 weeks?
User's manual/reference manual/func-
tional spec
Communication with customers using
functional spec
Text processing, sharing files for project
management.
Distribution of document
HOW much to include in document (hide
anything?)
Customer's application program (NaSsl-
Shneiderman) for acceptance
Project overview--original intent and
goals

Possible implementation languages
(Smalltalk, Flavors, Objective C)

Store objects and methods
Base classes
Concurrent use
Translators

Object-oriented systems with respect
to requirements

Objective C, Flavors
Prolog
Translators

Nature of requirements document
Actual requirements

Access objects from different lan-
guages
Actual requirements

Translators
Multiple copies
Support for object-oriented languages

Requirements vs. design decisions
Languages

Character string translation
Prolog prototype

Flavors
Server--access, store objects
HOW it works, what it does

Prototype vs. requirements document
for communicating design

Instructions for using prototype
Functional spec

How to express requirements
Define prototype in relation to require-
ments

Document prototype
Environment: C program that uses ob-

jects
Store and access objects

Convert to C
Methods
Relation to objective C

Project plans:
Proceed with prototype
Object-manager (interface to disk)

C O M M U N I C A T I O N S O P THlll ACre October 1993/Vol.36, No.10 ~ S

• 0 P r o j e c t O r g a l

Flavors interface
Difficulty of doing design. . .

Translate into Smalltalk or Flavors
Local objects

Object n a m e . . , how does it work?
Flavors;
Define'? pointer?
Surrogate objects

AccesslnO objects
Object name

Character string, pointer
ReCluirement: Lisp machine--include in
spec?

send messages
Character strings, surrogate
Object pointer
Object name, object id

Send messages
Flavors objects

Same Ii1 Prolog
Flavors details

Access tO objects Is external access
Flavors with Blggertalk, e.g.,
Internal vs. external objects

Transient/permanent, e.g.,
Implementation Issues, project manage-
ment: who decides this?

Flavors in s;Peclflcation (designers
don't want it:)

Scope of soeciflcation, requirements
Server--base set of classes, objects

Arrays, lists
Define
NOt on server
Methods in separate environment

Class of integers, class of arrays
Base set, base classes

Server functions
Data types

Prolog, handling integers
Add to a string
Tag to identify language
Methods

Storage tracks
Speed

Portability
Hardware
Track size, block size
Database access sPeed

WHO'S going to do what? Assignments
for the near future

References
1. Adelson, B. and Soloway, E. The role

of domain experience in Software
Design. IEEE Trans. Softw. Eng. (Nov.
1985), 1351-1360.

2. Boehm, B.R. Software Engineering
Economics. Prentice-Hall Inc., Engle-
wood Cliffs, N.J., 1981.

3. Burgess-Yakemovic, K.C. and Conk-
lin, J. Report on a development proj-
ect use of an issue-based information
system. In Proceedings of CSCW.
ACM, New York, 1990, pp. 105-118.

4. Carroll, J.M., Thomas, J.C. and Mal-

a n l z a t i o n and M a n a g e m e n t

hotra, A. Clinical-experimental anal-
ysis of design problem solving. Design
Studies 1, 2 (1979), 84-92.

5. Conklin,J. and Begman, M. gIBIS: A
tool for all reasons.J. Am. Soc. Inf. Sci.
(1989), 200-213.

6. Cosier, R.A. Methods for improving
the strategic decision ~. Dialectic versus
the devil's advocate. Strategic Manage.
J. 16 (1982), 176-184.

7. Cosier, R.A. and Dalton, D.R. Com-
petition and cooperation: Effects of
value dissensus and predisposition to
help. Human Relations 41, ll(Nov.
1988), 823-839.

8. Cosier, R.A. and Schwenk, C.R.
Agreement and thinking alike: In-
gredients for poor decisions. Acad.
Manage. Exec. 4, 1 (1990), 69-74.

9. Curtis, B. By the way, did anybody
study any real programmers? In Em-
pirical Studies of Programmers,
E. Soloway and S. Iyengar, Eds.,
Ablex, Norwood, N.J., 1986.

10. Curtis, B. Technology transfer in
knowledge-intensive organizations.
In Technology Transfer in Consortia and
Strategic Alliances, R. Smilor, Ed.,
Roman and Littlefield, Savage, Md,
1992.

11. Curtis, B., Kellner, M.I., and Over, J.
Process Modeling. Commun. ACM 35,
9 (Sept. 1992), 75-90.

12. Curtis, B., Krasner, H., and Iscoe, N.
A field study of the software design
process for large systems. Commun.
ACM 31, 11 (1988), 1268-1287.

13. Curtis, B., Sheppard, S.B., Kruesi-
Bailey, E., Bailey, J. and Boehm-
Davis, D. Experimental evaluation of
software specification formats.J. Syst.
Softw. 9, 2 (1989), 167-207.

14. Gersick, C.J. Time and transition in
work teams: Toward a new model of
group development. Acad. Manage. J.
31, 1 (1988), 9-41.

15. Krasner, H., McInroy, J. and Walz,
D.B. Groupware research and tech-
nology issues with application to soft-
ware process management. IEEE
Trans. Syst. Man. Cybern. 21, 4 (July/
Aug. 1991), 704-712.

16. Krasner, H., Terrel, J., Linehan, A.,
Arnold, P. and Ett, W.H. Lessons
learned from a software process
modeling system. Commun. ACM 35, 9
(Sept. 1992), 91-100.

17. Mason, R.O. A dialectical approach
to strategic planning. Manage. Sci. 15
(1969), 403-414.

18. Mason, R.O. and Mitroff, I.I. Chal-
lenging Strategic Planning Assumptions.
Wiley and Sons, New York, 1981.

19. Moran, T.T. and Carroll, J.M. (Eds.)
Design Rationale: Concepts, Techniques
and Use. Erlbaum, Hillsdale, N.J., to
be published.

20. Myers, W. MCC: Planning the revolu-
tion in software, IEEE Softw. (Nov.
1985).

21. Olson, G.M., Olson,J.S., Carter, M.R.
and Storrosten, M. Small group de-
sign meetings: An analysis of collabo-
ration. Human-Comput. Inter. 7, 4
(1992).

22. Sheppard, S.B., Milliman, P., Curtis,
B. and Love, T. Modern coding prac-
tices and programmer performance.
Computer 12, 12 (1979), 41-49.

23. Soloway, E. What tO do next: Meeting
the challenge of programming-in-
the-large. In Empirical Studies of Pro-
grammers, E. Soloway and S. Iyengar,
Eds., Ablex, Norwood, N.J., 1986.

24. Walz, D.B. A longitudinal study of
group design of computer systems.
Ph.D. dissertation, University of
Texas, Dec. 1988.

CR Categories and Subject Descrip-
tors: D.2.9 [Software Engineering]: Man-
agement; D.2.10 [Software Engineering]:
Design; K.6.1 [Management of Comput-
ing and Information Systems]: Project
and People Management; K.7.2 [The
Computing Profession]: Organizations

General Terms: Management
Additional Key Words and Phrases:

Case study, empirical studies of software
development, requirements determina-
tion, software design teams, software
management

About the Authors:
DIANE B. WALZ is an assistant professor
of information systems at the University
of Texas at San Antonio. Current re-
search interests include group processes
in software development, problems of
outsourcing, and creativity and software
design. Author's Present Address: Divi-
sion of Accounting and Information Sys-
tems, University of Texas at San Antonio,
6900 N Loop 1604 W, San Antonio, TX
78249; email: IlSDXW@ UTSAVM1

JOYCE J. ELAM is the James L. Knight
Scholar in management information sys-
tems at Florida International University.
Current research interests include the
competitive use of information technol-
ogy to support both individual and group
decision making. Author's Present Ad-
dress: Department of Decision Sciences
and Information Systems, Florida Inter-
national University, University Park,
Miami, FL 33199; emaii: elamj@servax.
bitnet

76 October 1993/Vol.36, No.10 ¢ : O M M U N I C A T I O N S O I I THIE A l ~ l ~

BILL CURTIS is former director of the
Software Process program at the Software
Engineering Institute (SEI) at Carnegie
Mellon University. He continues to work
with the SEI and is helping to establish a
software quality institute at the University
of Texas at Austin. Current research in-
terests include improving organizational

capabilities for developing software, em-
pirically based models of software design,
and software measurement and design
process. Author's Present Address : 3644
Ranch Creek, Austin, TX 78730; email:
bcurtis@cs.utexas.edu
Permission to copy without fee all or part of this
material is granted provided that the copies are not

made or distributed for direct commercial advantage,
the A C M copyright notice and the title of the publi-
cation and its date appear, and notice is give that
copying is by permission of the Association for
Comput ing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

©ACM0002-0782/93/1000-062 $1.50

Twenty of the 34 ACM Special Interest Groups (SIGs) held elections last June for terms running
from July 1, 1993 through June 30, 1995. The newly elected officers are listed below. For a full
list of current SIG chairs, see the ACM masthead in this issue; for a complete list of SIG
officers, contact SIGS@acm.org.

N e w l y E l e c t e d A C M S I G O f f i c e r s

SIGACT SIGART Janet Har tman
F. Thomson Leighton Stuart C. Shapiro Board of Directors
Chair Chair J. Paul Myers
Jeffrey s. Vitter Alan M. Frisch Board of Directors
Vice Chair Vice Chair Margaret Reek
Michael Luby Lewis Johnson Board of Directors
Secretary~Treasurer Secretary~Treasurer SIGDA
Michael T. Goodrich SIGBIT Jim Cohoon
Member-at-Large George M. Kasper Chair
Vijaya Ramachandran Chair Joanne DeGroat
Member-at-Large Janice C. Sipior Vice Chair
SIGAda Vice Chair Robert A. Walker
Hal Hart Don Hardaway Secretary~Treasurer
Chair Secretary~Treasurer SlGDOC
Jerry Mungle SIGCAS Nina Wishbow
Vice Chair, Mtgs. & Confs. C. Dianne Martin Chair
Edward Colbert Chair Stephanie Rosenbaum
Vice Chair for Liaison David Bellin Vice Chair
Brad Balfour Vice Chair Barbara Mirel
Secretary Deborah G. Johnson Secretary
Russell R. Plain Secretary~Treasurer Katherine Haramundani
Treasurer SIGCHI Treasurer
Rudolf Landwehr James R. Miller SIC, G R A P H
International Rep. Chair Mary C. Whitton
SIGAPL Michael E. Atwood Chair
Dick Bowman Executive Vice Chair Sylvie J. Rueff
Chair Gene Lynch Vice Chair
Stuart Yarus Vice Chair for Conferences Steven M Van Frank
Vice Chair Vivienne Begg Treasurer
Michael Kent Vice Chair for Operations SIGMETRICS
Secretary~Treasurer Beth Adelson Linda S. Wright
Dick Holt Vice Chair Chair
Member-at-Large Clare-Marie Karat Donald Towsley
Christopher H. Lee Vice Chair for Finance Vice Chair
Member-at-Large Jakob Nielsen Daniel A, Reed
David M. Weintraub Vice Chair for Publications Secretary~Treasurer
Member-at-Large SIGCPR Domenico Ferrari
SIGARCH Thomas W. Ferratt Board of Directors
David A. Patterson Chair Mike Molloy
Chair Albert Lederer Board of Directors
Jean-Loup Baer Vice Chair Richard Muntz
Vice Chair Catherine M. Beise Board of Directors
Alan Berenbaum Secretary Randolph Nelson
Secretary~Treasurer Bruce E. Breeding Board of Directors
Mark D. Hill Treasurer SIGMOD
Board of Directors SIGCSE Won Kim
Mary Jane Irwin Lillian (Boots) Cassel Chair
Board of Directors Chair Laura Haas
Norman P. Jouppi G. Michael Schneider Vice Chair
Board of Directors Vice Chair Michael Carey
Alan J. Smith Henry M. Walker Treasurer
Board of Direc tors Secretary~Treasurer

SIGNUM SIGSMALL/PC
John R. Gilbert Hossein Saiedian
Chair Chair
Robert S. Shreiber Gerald P. Crow
Vice Chair Vice Chair
Christian Bischof Richard McBride
Secretary/Treasurer
David H. Bailey SIGSOFT
Board of Directors Lori Clarke
Alan Edelman Chair
Board of Directors John Gannon
David M. Gay Vice Chair
Board of Directors David Notkin
Andreas Griewank Secretary~Treasurer
Board of Directors Barry Boehm
Stephen G. Nash Member-at-Large
Board of Directors Thomas Ostrand
Maria Elizabeth Ong Member-at-Large
Board of Directors Mary Lou Sofia
Lloyd N. Trefethen Member-at-Large
Board of Directors
David W. Walker
Board of Directors
SIGPLAN
Brent T. Hailpern
Chair
Barbara Ryder
Vice Chair for Conferences
John Pugh
Vice Chair for Operations
Bernard Lang
Secretary
Mary Lou Sofia
Treasurer
Marina C. Chen
Member-at-Large
Ron K. Cytron
Member-at-Large
David W. Wall
Member-at-Large
SIG SAM
Erich Kaltofen
Chair
Stephen Watt
Vice Chair
Bruce W. Char
Secretary
Gene Cooperman
Treasurer

COMMUNICAT IONS O I I THE ACM October 1993/Vol.36, No.10 7 7

