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Surface roughness plays a crucial role in tribology. In order to make an accurate evaluation of one of the most common 

measure, roughness RMS, R
q

, it is essential to have a high surface roughness uniformity. In this paper, we introduce the 

Shannon entropy as a measure of surface roughness uniformity. For  numerically-generated randomly rough  surface, we 

compare the performance of evaluating this measure  from the height distribution, H
hei.dist

, and from the height matrix, 

H
hei.matr

. The results show that  H
hei.matr

 is more sensitive to surface roughness uniformity than H
hei.dist

. Moreover, 

H
hei.dist

 and R
q

 are negatively correlated, while  H
hei.matr

 and  R
q

 are uncorrelated. Additionally, H
hei.dist

 depends on  

an additional parameter, the size of bin, in the discretization of height distribution, whereas  H
hei.matr

  is parameter free. 

These results imply that   H
hei.matr

 is better suited for the investigation of surface roughness uniformity than H
hei.dist

, 

complementing the information of R
q

. 

 

1. Introduction  

Studying of surface roughnessis very important in 

understanding several physics phenomena such as friction [1], 

adhesion [2], and so on. Moreover, surface roughness has a 

considerable practical importance for nanocomposites and 

nanostructured materials [3], development of small mechanical 

devices [4], self-cleaning surfaces [5], among others.        

From the topography one can extract the RMS (Root 

Mean Square) roughness parameter, R
q

, which can be easily 

calculated and it is widely used to quantify surface roughness 

even though it suffers from some disadvantages [6, 7]. The 

measure R
q

 can be biased if the surface has a considerably 

number of high peaks or deep valleys, relatively to the mean 

height. That is, the R
q

 can be affected if the roughness is not 

uniformly distributed on the entire surface. In this perspective, 

it is important to evaluate the surface roughness uniformity. To 

this purpose, we propose applying the Shannon entropy [8] as a 

surface roughness uniformity measure. 

Recently, Nosonovsky [9] introduced the Shannon 

entropy as a measure of randomness for rough profiles, where 

he assumes that each data point (pixel) corresponds to a bin. In 

our approach we consider the Shannon entropy as a measure 

of uniformity of the entire surface and we compare the 

computation of this entropy employing the height 

distribution and the height matrix. Henceforth, H
hei.matr

 

denotes the estimation of the Shannon entropy from the 

topographic height matrix and H
hei.dist

 denotes the 

estimation of the Shannon entropy from the topographic 

height distribution. 

The relationship between data uniformity and 

entropy has been successfully applied in several fields of 

science such as economy [10], electromyography and 

kinesiology [11], operational research [12], clinical 

radiology [13], manufacturing [14]. For instance, Kam et al. 

(2012) identifies several uniformity metrics from several 

areas and compares their performance in detecting 

nonuniform particle distributions. They show that Shannon 

entropy is the recommended measure for assessing spatial 

uniformity of particle distributions on surface [15]. As this 

distribution is discrete, the use of Shannon entropy is 

straightforward. However, applying this measure for a 

continuum distribution requires more effort. This is the case 
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of height distribution function. 

In order to estimate H
hei.dist

 one needs to discretize the height 

distribution into bins of size δ. Nonetheless, one can take 

distinct H
hei.dist

 as a result of different choices of δ for a 

given surface. In order to overcome this weakness of H
hei.dist

, 

we replace the height distribution by the height matrix in 

evaluation of topographic entropy, H
hei.matr

.  

The remainder of the paper is organized as follows. We start 

Section 2 by describing how computing H
hei.dist

 (Subsection 

2.1) and outlining the procedure for evaluating H
hei.matr

 

(Subsection 2.2). After that, we delineate the numerical 

simulation used to evaluate which is the procedure, H
hei.dist

 

or H
hei.matr

, better suited for quantifying surface roughness 

uniformity (Subsection 2.3). In Section 3, we present results 

and discussions for the numerical simulation described above. 

In Section 4, we summarize the paper and we consider possible 

further works. 

 

2. Topographic Uniformity 

From the topographic perspective, a surface is completely 

characterized by a single matrix, the height matrix, whose 

entries h
ij

 are the height of corresponding data points (or 

pixels) located at   
ji yx ,  or just (i,j). The height matrix 

can be extracted, for instance, by imaging techniques [6]. 

 

2.1 Topographic Entropy from height distribution 

 Once the height matrix is extracted, one can apply 

the histogram method to obtain the discretized height 

distribution with B bins of size δ each one. 

 Thereafter, we compute the probability p
k
 of 

appearance of a height in the bin k 





B

k

k

k
k

n

n
p

1

               (1) 

where n
k
 stands for the number of heights in the bin k. 

Figure 1 Application of distheiH .   for surface characterization suffer  from  dependence of such  measure on  .  In this  

case,  it is shown  (from  top to  bottom) a random rough surface and  its  corresponding height distribution with  three 

choices  of   that lead  to  three  distheiH . . 
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 The topographic entropy is taken as the Shannon 

entropy, 

             k

B

k

k ppH log
1

)1( 


            (2) 

 Its normalized and centralized value is 
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        (3) 

 Since BH log0 )1(  . The value H
(1)

=logB 

occurs for uniform height distribution where p
k
=1/B, on the 

other side H
(1)

=0 occurs when B=1 and p=1. 

 The discretization process described above depends 

on the size δ. Different choices of δ can lead to different 

quantities of B and n
k
. As a result of this, one can take 

different H
hei.dist

 for the same surface as illustrated in Fig.1. 

One would expect that this limitation of H
hei.dist

 could be 

solved by choosing the minimum δ allowed by binning 

process, min

~
 . Nonetheless, even so H

hei.dist
 could be δ-case 

dependent because different surfaces can have different min

~
 . 

 

2.2 Topographic Entropy from height matrix 

As the topographic entropy is related to the degree of 

surface roughness uniformity we assume that to evaluate how 

uniform a surface is we need to know whether the height h
ij

 

contribute or not to the uniformity. To help in this task we 

estimate the first and third quantiles Q
1

 and Q
3

. Next, we 

compute the quantities 
1311 5.1

~
QQQQ  and 

1333 5.1
~

QQQQ   that represents whiskers in the statistical 

boxplot. 

We assume that the contribution to the uniformity 

comes from the set of pixels whose height h
ij

 belongs to the 

region ]
~

,
~

[ 31 QQ , on the other hand the pixels whose     

]
~

,
~

[ 31 QQhij  have no contribution. We denote by η the 

pixels that has no contribution to the uniformity. The 

smaller the value of η, the more uniform is the surface. When 

η=0, one has a uniform surface.  

 

   




 


otherwise

QQhij

ij

,0

]
~

,
~

[,1 31          (4) 

 The above indexing can be interpreted as a 

mapping of a matrix of continuum values, 
Njiijh

,...,1, 
, into 

a matrix of discrete values 
Njiij ,...,1, 

 .  

 The contribution of each pixel to surface roughness 

uniformity is computed by 

    

ij

N

i

N

j

ij

ijp
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 The topographic entropy is taken as the Shannon 

entropy, 

ij

N

i
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j
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 where its normalized and centralized value is 
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 since 
)2(

max

)2()2(

min HHH  . Now we need to 

compute 
)2(

maxH  and 
)2(

minH . From the definition of η we 

have, 


 


N

i

N

j

ij N
1 1
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therefore 

 







2N
p

ij
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The case 
)2(

maxH corresponds to a uniform surface, 

η
min

=0, hence ),(,/1 2 jiNpij  , consequently     

2)2(

max log NH                  (10) 

The case 
)2(

minH  corresponds to a surface with maximum 

η, that is η
max

=(1/2)N
2

−2 due to the region ]
~

,
~

[ 31 QQ  in 

boxplot has, at least, (1/2)N
2
+2 pixels. As N>>1, we have 

p
ij

=1/(N
2

/2) if ]
~

,
~

[ 31 QQhij   or p
ij

=0 otherwise. 

Therefore 

)2/log( 2)2(

min NH       (11) 
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2.3  Numerical Simulation 

Numerically, a random rough surface (RRS) can be generated 

by considering an initial mesh with N×N pixels which will 

receive heights driven by the following rules: 

i)   ),1(~
,...,1

NUnifx
Nii 

  

ii)       ),1(~
,...,1

NUnify
Nii 

  

iii)      ),(~,
,...,1, qNjiji RhGauyxh


 

This means that there is no preferential direction on the 

plane x-y and surface heights are Gaussian distributed. 

Once the RRS is generated, we compute both H
hei.dist

 and 

H
hei.matr

 for different δ, changing from δ
min

 to δ
max

. 

Afterwards, we evaluate the performance of H
hei.dist

 and 

H
hei.matr

 in detecting topographic uniformity through the 

ensuing steps: 

i) A RRS with η
min

=0 is generated (uniform surface);  

ii) For each iteration, a generated ]
~

,
~

[ 31 QQhij   replaces 

one ]
~

,
~

[ 31 QQhij  . In turn, it is computed H
hei.dist

 

and H
hei.matr

;  

iii) The step (ii) carries on until η
max

=(1/2)N
2

−2. 

As the third numerical experiment we analyze the 

behavior of R
q

, H
hei.dist

 and H
hei.matr

 when the height 

matrix increase by a multiplicative factor k, i.e. 

),(, jikhh ijij  . The process h
ij

→kh
ij

 will enables us 

to estimate the correlation between R
q

, H
hei.dist

, and 

H
hei.matr

. 

3  Results and discussion 

In this section we present results and discussion on the 

numerical simulation described in Subsection 2.3. 

Furthermore, we consider two surface profiles to discuss in 

more details the relationship between entropy and surface 

roughness uniformity. 

The common parameters throughout all simulations are: 

0h , R
q

=1. In Fig. 2(a) the surface has 20×20 pixels and 

0.1≤δ≤1.0, in Fig. 2(b) the surfaces have number of pixels 

from 10×10 to 25×25 and δ=0.0001, in Fig. 2(c) the surface 

has 20×20 pixels and δ=0.0001. All the codes were 

                                            

All the implemented algorithm used in this paper can be shared for 

research purposes. For that, contact the authors. 

Figure 2:  Results for the 3 simulations outlined in subsection 2.3.(a) The entropies from Eq. 3 and 7 as a function of size of bins  . When δ 

increase
matrheiH .

 remained steady, while 
distheiH .

 decrease as an overall trend. (b) The dependence of  
distheiH .

 and 
matrheiH .

 on the normalized 

nonuniformity max/ . Since 
distheiH .

 does not depend directly on η we normalize and centralize distheiH .  for an effective comparison with 

matrheiH . , i.e, we use 

)max(

)min(~

..

..

.

distheidisthei

distheidisthei

disthei
HH

HH
H




 . Notice that matrheimatrhei HH ..

~
   .Even though in different ways, both entropies decrease 

when max/  rises. (c) Effect of increasing ijh  by a multiplicative factor k on the measures qR , distheiH .  and 
matrheiH .

. One can see that qR  and 

distheiH .  are negatively correlated, whereas  and matrheiH .  and qR  are uncorrelated. 
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implemented in programming language R [16] . 

Figure 2(a) shows how the measures H
hei.dist

 and 

H
hei.matr

 are affected when different choices of δ are taken. 

As expected, one can see that H
hei.matr

 remained stable. On 

the other side, H
hei.dist

 had some increases for certain δ, while 

this entropy declined as an overall trend. 

Figure 2(b) shows how distheiH .

~
 and H

hei.matr
 change 

when the normalized quantity of nonuniformity on surface, 

η/η
max

, rise. Both distheiH .

~
 and H

hei.matr
 decline when 

η/η
max

 increase, what is in accordance with our intuition for 

entropic measure: the smaller the uniformity, the smaller the 

entropy. However , such falls occur in distinct ways: H
hei.matr

 

drop monotonically, whereas distheiH .

~
 decline sharply at the 

beginning, subsequently have some regions of constancy and 

slight decrease. Such differences between drops of distheiH .

~
 

and H
hei.matr

 might be explained by the fact that one height 

matrix determines univocally one surface, whereas the same 

height distribution can be associated to distinct surfaces. 

Figure 2(c) shows that H
hei.matr

 stays constant when k 

increase, whereas H
hei.dist

 decrease and R
q

 increase. The 

measures H
hei.dist

 are R
q

 negatively correlated, 

867,0),( . distheiq HRcor , while R
q

 and H
hei.matr

 are 

uncorrelated. Therefore H
hei.matr

 can be taken as a 

complementary measure to R
q

 

  

Figure 3: Both H
hei.matr

 and H
hei.dist

 do not take the height spatial 

distribution into account. In this case, two RRS were generated with 

the same height matrix and height distribution, but with different 

spatial configuration have the same H
hei.matr

 and H
hei.dist

. 

It deserves to be noted that the entropy computed from 

Eq. 1 and 2 ignores the spatial correlation between the 

measurement points [9]. Such drawback is not solved by Eq. 

5 and 6, as illustrated in Fig. 3. 

As one can see in Fig 2 and Fig. 3 the values of 

H
hei.matr

 and H
hei.dist

 are not the same, in general. These 

differences can be explained by the fact that H
hei.dist

 

measures the uniformity regarding the uniform distribution 

Bnp Bkk /1)( ,...,1  , while H
hei.matr

 measures the 

uniformity regarding the bidimensional uniform distribution 

2

,...,1, /1),( Nyxp Njiji  . 

Even though both H
hei.matr

 and H
hei.dist

 do not 

include spatial information about the pixels (i,j), one can 

conclude from the findings in Fig. 2 that H
hei.matr

 provides 

a more accurate way for ascertaining the topographic 

uniformity than H
hei.dist

, since H
hei.matr

 does not depend 

on an additional parameter, it has an univocal relationship 

with the uniformity degree and it is uncorrelated with R
q

 

Figure 4: Two surface profile numerically generated. The blue line indicate that H e R
q

 were computed for the entire profile, while the red lines indicate 

the subregion considered for computing R
q

. For these set of subregions the standart error,  σ/ ,n , of R
q

 are ε
left

=0.10 and ε
right

=0.51. 
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Now, as pointed out since the Section 1, the entropic 

approach is related to the degree of surface roughness 

uniformity. Indeed, we can interpret the topographic entropy as 

a measure of how uniform is the set of heights distributed on 

the entire surface. As an example, let us consider two surface 

profile as illustrated in Fig. 4. For simplicity, we denote 

2,1),(. kkprofileH matrhei  just by 2,1, kH k . One 

can see that, in the left profile, the difference among the 

measured R
q

 in distinct subregion is not considerable ( 

ε
left

=0.10) what lead a high entropy (in this case the maximum 

value). Nonetheless, the right profile has a substantial 

difference among the three subregions (ε
right

=0.51) what 

decrease the entropy. 

4  Conclusion 

We introduce the Shannon entropy as a measure of surface 

roughness uniformity. For numerically-generated randomly 

rough surface we compare the performance of estimation of the 

Shannon entropy from the height distribution, H
hei.dist

, and 

from the height matrix, H
hei.matr

, regarding three aspects: 

dependence on an additional parameter, sensibility to surface 

roughness uniformity and correlation with R
q

. The results 

show that H
hei.matr

 is better suited for quantifying surface 

roughness uniformity than H
hei.dist

.  

The measure H
hei.matr

 can complement the information of 

R
q

 and consequently can contribute for characterization of 

rough surfaces. 

It is important to stress that H
hei.matr

 is not able to detect 

spatial configuration of pixels on surface. In this perspective, 

extending this methodology to a more general one would be 

interesting. Additionally, further research might investigate the 

direct interplay between topography uniformity and surface 

phenomena such as friction and adhesion. 
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