
Physica A 581 (2021) 126192

R
a

b

c

d

e

f

a
o
t
p

u
s
p
d
p

h
0

Contents lists available at ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

Lacunarity exponent andMoran index: A complementary
methodology to analyze AFM images and its application to
chitosan films
Erveton P. Pinto a,∗, Marcelo A. Pires b, Robert S. Matos a,c, Robert R.M. Zamora a,
odrigo P. Menezes d, Raquel S. Araújo a,e, Tiago M. de Souza f

Universidade Federal do Amapá, Amapá 68903-419, Brazil
Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro 22290-180, Brazil
Universidade Federal de Sergipe, Sergipe 49100-000, Brazil
Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro 22541-041, Brazil
Universidade Federal de Ouro Preto, Minas Gerais 35400-000, Brazil1
Universidade do Estado do Amapá, Amapá 68900-070, Brazil

a r t i c l e i n f o

Article history:
Received 24 April 2021
Received in revised form 28 May 2021
Available online 18 June 2021

Keywords:
Fractal lacunarity
Spatial autocorrelation
Surface topography
Polymeric films
Glycerol

a b s t r a c t

In this work, we developed new scripts to calculate the lacunarity exponent and Moran’s
index of Atomic Force Microscopy (AFM) images. The lacunarity exponent was estimated
by combining the Otsu binarization and gliding-box algorithm, and Moran index was
introduced to evaluate the surfaces’ spatial autocorrelation. Developed scripts were
first validated using numerical simulation of self-similar fractal and self-affine isotropic
surfaces. Then, we successfully synthesized chitosan films with different glycerol con-
centrations and used the lacunarity and Moran’s index for a thorough characterization.
The validation of the proposed scripts using simulated Sierpinski Carpets and 3D artificial
surfaces showed promising potential for analyzing AFM images. Finally, the methodology
application to AFM images of chitosan films suggested that lacunarity analysis and Moran
index determination could complement thin films’ quality processing control.

© 2021 Published by Elsevier B.V.

1. Introduction

Atomic Force Microscopy (AFM) is one of the most advanced and powerful techniques for scanning, measuring, and
nalyzing surfaces. Its high resolution reaches the atomic level, allowing the evaluation of particles’ spatial distribution
n surfaces, a factor that influences several interface phenomena, such as wear, friction, and adhesion [1–3]. It allows
he obtention of tridimensional images of solid surfaces in contact with air, liquid, and others with minimum sample
reparation [4,5].
The processing of AFM images has been widely studied to obtain surface parameters [6–13]. The texture of real surfaces

sually shows self-affinity at some scales, which allows the modeling of its structure as a self-affine fractal. Unlike self-
imilar fractal that is isotropic and scale-invariant, the similarity of self-affine ones is only statistical [14]. The statistical
atterns are closely related to the image’s pixel distribution, corresponding to the AFM surface’s heights. The fractal
imension reflects how denser the set of pixels is and provides a statistical index of complexity, which indicates how
attern details change with the scale. The higher the fractal dimension, the stronger the pattern’s persistence [7,14–17].
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Different objects can present the same fractal dimension and utterly different texture patterns [8,14,18–20]. Man-
delbrot [18] introduced the lacunarity measurement to differentiate such objects, which later proved to be effective for
non-fractal ones [19,20]. Lacunarity describes, at various scales, the distribution of lacunas (void spaces) within a data
set (like the height matrix of an AFM image). High lacunarity exponent values indicate a heterogeneous arrangement of
lacunas, whereas low one’s depict a tendency to a homogeneous distribution [8,18–20].

In the microscopy field, fractals present significant contributions about magnification’s and scale’s effects on morphol-
ogy, providing critical concepts for understanding and quantifying some aspects of randomness, irregularity, complexity,
shapes and patterns self-similarity [20]. Nonetheless, only the fractal dimension is given by commercial image processing
programs [8]. There is still no consensus about the best methodology to determine fractal lacunarity, and different
algorithms have already been proposed for this purpose [8,20–24].

Dias et al. [22] used ImageJ software and FracLac plugin, adapted with the differential box-counting algorithm,
to determine lacunarity and identify stains patterns in 8-bits-grayscale images of rough metal surfaces. The authors
concluded that lacunarity measurements are suitable to monitor defects or roughness variations of metal surfaces. The
same software and plugin were applied by Pander et al. [24] for the analysis of carbon nanotube forestry-like catalysts
surfaces using AFM images converted into grayscale. The comparison of fractal analysis and Raman mapping distributions
revealed different catalyst’s annealing stages.

Binary and grayscale methods were also used for computing lacunarity and their accuracy to classify urban features
remotely detected [21]. The authors used the gliding-box and differential box-counting algorithms to estimate lacunarity
of binary and grayscale images, respectively. Their results highlighted the spectrum-based classification inaccuracy (55%)
compared to lacunarity approach (92%). The differential box-counting algorithm was also used by Ţălu et al. [8] for the
lacunarity analysis of AFM images from silver/diamond-like carbon nanocomposite film. Fractal lacunarity showed to be
useful in advanced surface image characterization.

FracLac plugin of ImageJ software is generally used to determine the fractal lacunarity of digital images, but it only
allows evaluating 8-bits grayscale images or in RGB format. Although helpful, it is too limited to analyze AFM data. Works
based on algorithms written in C++ [21] and Fortran [8] languages undoubtedly represent an advance. Therefore, the fractal
lacunarity potential for analysis of AFM images remains unexplored and deserves deeper investigations to establish an
efficient and accurate evaluation methodology.

Another parameter that seems interesting to analyze AFM images is the Moran Index. It is the most widespread spatial
analysis tool for characterizing area units’ spatial autocorrelation [25–31]. Such parameter is a standardized measure of the
correlation between observations in neighboring areas and is commonly used to analyze geographic data. Cocu et al. [25]
used Moran’s index to investigate spatial autocorrelation of annual abundance for the pest aphid Myzus persicae collected
n suction traps distributed across north-west Europe. The authors concluded that trap data could provide representative
nformation for large geographical areas and can be used to estimate the species’ aerial abundance. Moran index was also
sed by Shirzadi et al. [31] to determine the spatial distribution of cutaneous leishmaniasis in northeastern Iran. Spatial
nalysis indicated that the disease incidence presented a cluster pattern, showing high-risk areas, which can be used in
ontrolling and prevention tools.
Considering these aspects, we developed algorithms in the R language [32] to calculate the fractal lacunarity and Moran

ndex of AFM topography images using the measured height matrix. Scripts validation was carried out by numerical
imulation of self-similar fractal and 3D artificial surfaces with controlled roughness. Afterward, algorithms were applied
o analyze the fractal lacunarity and Moran Index of chitosan films, a promising material for the biomedical field [33–39].

. Materials and methods

.1. Fractal dimension

Fractal dimension (Df) values were calculated using Gwyddion software [40]. We used the box-counting algorithm to
etermine the minimum number of squares [N(s)] of side s needed to cover the entire set. According to Mandelbrot [14],
(s) obeys a power law of type N(s) = γ · s−D

f , where Df is the fractal dimension and γ is an arbitrary constant. Therefore,
Df was determined by the slope of the Log [N(s)] versus Log [1/s] curve.

2.2. Fractal lacunarity

Lacunarity is a complementary measure of the fractal dimension that allows a better description of their texture.
We proposed a new method for calculating lacunarity of AFM images based on the combination of the gliding-box
algorithm [21,23,41–43] with the Otsu binarization [44–46], which was written in R language.

For binarization, a height value k was used to separate the heights (varying from 0 to h) into C0 and C1 classes. C0 and
1 indicate pixels with heights varying in the [0, . . . , k − 1] and [k, . . . , h] ranges. The occurrence probabilities of C0 and
1 were given by W0 = n0/N and W1 = n1/N , respectively (where n0 and n1 are the number of times each class occurs
nd N is the total number of pixels). Mean heights of the respective classes (µ0 and µ1,) were calculated using Eqs. (1)

and (2).

µ0 =

k−1∑
i ·

ni

n
, (1)
i=0 0
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µ1 =

h∑
i=k

i ·
ni

n1
, (2)

For each height i, conditions (3) and (4) must be fulfilled:

W0 · µ0 + W1 · µ1 = µT , (3)

W0 + W1 = 1, (4)

where µT is the average of the matrix’s height values.
The variances of C0 and C1 were given by Eqs. (5) and (6).

σ0
2

=

k−1∑
i=0

(i − µ0)
2
·
ni

n0
, (5)

σ1
2

=

h∑
i=k

(i − µ1)
2
·
ni

n1
, (6)

The class variance and the variance between classes were calculated using Eqs. (7) and (8), respectively [44].

σW
2

= W0 · σ0
2
+ W1 · σ1

2, (7)

σB
2

= W0 · (µ0 − µT )
2
+ W1 · (µ1 − µT )

2
= W0 · W1 · (µ0 − µ1)

2 , (8)

To evaluate the efficiency of the threshold at height k, we used a measure of class separability, Eq. (9) [47]. According
o this criterion, the best threshold k* is the one that maximizes the separability, as shown in Eq. (10).

η =
σB

2

σT
2 , (9)

k∗
= argmax[η], (10)

here σ 2
T = σ 2

W + σ 2
B is the variance of the matrix’s height values.

The maximum value of η(k*) can be used as a class separability measure of the original image or histogram bimodality.
his parameter is invariant under similar scale transformations and varies within the range:

0 ≤ η(k∗) ≤ 1, (11)

here the lower (zero) and upper (one) limits correspond to images presenting single and double heights values,
espectively.

After calculating the optimal threshold (k*), AFM images were binarized following the condition represented by Eq. (12).
ach height was represented by a function z(x, y), where x and y correspond to the pixel’s coordinates.

g (x, y) =

{
1 if z(x, y) ≥ k∗

0 otherwise
. (12)

The gliding-box algorithm was used to evaluate the distribution of lacunar pixels in the binary images. A square box
of length r slides over the image from the upper right corner to the bottom left one, advancing a column and a line per
scan, whereas the number of lacunar pixels p inside the box is counted (Fig. 1).

The number of r-length boxes with p lacunar pixels is given by the frequency distribution n(p, r), whereas the
robability distribution Q (p, r) is calculated using Eq. (13). Here, each position occupied by the box is considered a new
ox.

Q (p, r) =
n(p, r)
N(r)

, (13)

here N(r) = (∆a − r + 1) · (∆b − r + 1) is the total number of possible boxes for a given value of r , and ∆a and ∆b
s the number of pixels corresponding to the image’s height and base, respectively. Thus, according to the literature [18],
he lacunarity L(p, r) can be calculated using Eq. (14).

L (p, r) =

∑
p2 · Q (p, r)[∑
p · Q (p, r)

]2 , (14)

The lacunarity drop with the r increasing can be expressed by a power law of type L(p, r) = α.r −β , where β is the
xponent of lacunarity and α is an arbitrary constant. Thus, the exponent of lacunarity (β) can be determined by the slope
f the ln [L (p, r)] versus ln [r] curve, Eq. (15).

ln[L p, r ] = ln[α] + βln[r], (15)
( )

3
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Fig. 1. Illustration of the gliding-box algorithm for a square box with length r = 3 running on a 15 × 9 pixel binary image.

When r tends to rmáx (for example, rmax = 256 for a 256 × 256 pixels image), the lacunarity value and lacunarity
xponent tend to 1 and zero, respectively. β is invariant to scale transformations [48], revealing how lacunar patterns
ersist in different parts of the image. The closer β is to zero, the more homogeneous the surface becomes. Scripts
eveloped to calculate the Otsu threshold and the fractal lacunarity were presented in Appendix A.

.3. Moran’s index

According to the literature [25–31], Moran Index (I) is a standardized measure of spatial autocorrelation among
ariables of neighboring areas, varying in the range of −1 to 1. For height data obtained from AFM images, an index
= 0 reveals spatial independence of heights distribution throughout the surface (perfect randomness). A positive index
I > 0) indicates the grouping degree of similar heights and a perfect clustering when I = 1. In contrast, a negative index
I < 0) demonstrates the grouping degree of different heights and represents an ideal dispersion when I = −1.

The spatial autocorrelation analysis was conducted using the queen contiguity neighborhood [49]. From the neigh-
orhood criterion, pairs of areas i and j were represented by the spacial weight Wij = 1 and Wij = 0 when they were
onnected or not, respectively. Moran index was calculated according to Eq. (16).

I =
N∑

i
∑

j Wij

∑
i
∑

j Wij (Zi − µ)
(
Zj − µ

)∑
i (Zi − µ)2

, (16)

here N is the total number of areas, Zi and Zj are the height values of areas i and j, respectively, and µ is the height
verage of areas i and j.
A script was developed to generate a Moran correlogram (Appendix A), which is a graph of the Moran index against

istance lags (1st, 2nd, . . . , nth neighborhood) [25]. The correlograms were generated using the sp.correlogram function
rom spdep package [50] written in R language.

.4. Validation of R-scripts developed to calculate fractal lacunarity and Moran index

The R-script for lacunar analysis was first applied to the Sierpinski Carpet fractal [51]. This fractal (Df ∼ 2.79) was built
by dividing a square into nine parts, from which the central one was removed. This procedure was repeated recursively to
the eight remaining subsquares to generate fractal images of 81 × 81, 243 × 243, and 729 × 729 pixels using an adapted
script openly available [52].

Before analyzing real images, R-scripts for calculation of Moran Index and fractal lacunarity were validated using
artificial surfaces with controlled roughness parameters. Self-affine rough surfaces with power spectral density (PSD)
given by a power-law and fractal’s spectrum region depending on Hurst exponent (H) were simulated according to
Persson et al. [53]. We employed the rough surface package from Ref. [54]. The artificial height-matrix was generated
4
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Table 1
Formulations of chitosan films.
Formulation Chitosan

(% m/v de solution)
Glycerol
(% m/m of chitosan)

#1 2 0
#2 2 3
#3 2 25

using Fourier transform and the Monte Carlo method [55,56]. Artificial surfaces with different Hurst exponents (0.10,
0.30, 0.50, 0.70, and 0.90) were simulated in triplicate (Appendix B). The height matrices were extracted to generate 3D
images of 256 × 256 pixels.

2.5. Synthesis of chitosan films

Chitosan films were prepared using the casting method [38,39]. Chitosan powder (low molecular weight and deacety-
lation of 95%) (Sigma-Aldrich R⃝, Brazil) and glycerol (Alphatec Química Fina R⃝, Brazil) were dissolved in glacial acetic acid
(3% v/v) (Cromaline Química Fina Ltda R⃝, Brazil) to obtain a film-forming solution with 2% (m/v) of polymer and different
concentrations of glycerol, as shown in Table 1. The film-forming solution was stirred at room temperature (25 ± 2◦C)
for 2 h, and their aliquots (40 ml) deposited in glass Petri dishes (90 mm in diameter) for drying at room temperature
during 5 days. After detachment from the dishes, the samples were individually stored in a sterile bag until analysis.

2.6. AFM images

Topographic images were obtained using atomic force microscopy (AFM), Park NX-10 model (Park Systems, South
Korea), in tapping mode. The scans were performed using a monocrystalline silicon probe, conical-shaped, with a 10◦

opening angle and 6 nm apex radius. The cantilever was made of the same material, with elastic constant and resonance
frequency of 5.1 N m−1 and 150 kHz, respectively. The scans were carried out with a relative humidity of 45% at 23 ± 2 ◦C.
Films (∼1.0 cm 2 in size) were fixed in the sample holder using double-sided adhesive tape, and four randomly chosen
areas (2.5 µm2) of each film were evaluated. Tapping mode was programmed with an amplitude of 30.39 nm, a setpoint
of 21.05 nm, and a two-second scan for every 256 pixels line. This process provided a 256 × 256 data matrix, where each
pixel represents a height value.

After generating the topographic images, the height matrices, root mean square (RMS) roughness (Sq), average
roughness (Sa), kurtosis (Sku), and skewness (Ssk) were calculated were using WSxM software [57]. A detailed description
of these parameters can be found in the literature [6,7,13,55,58].

2.7. Power spectrum density (PSD)

PSD was determined through the Fourier transform of the autocorrelation function of heights distribution, which
decomposes surfaces into contributions of different spatial frequencies (represented by wave vectors q). WSxM software
was used to calculate one-dimensional PSD (PSD1D) for each line of the scanned image according to Eq. (17).

PSD1D (qx) = Lx−1
[∫ h

Lx
(x, y)e−iqxx

]2

(17)

where h(x, y) is the height distribution function, Lx is the number of pixels per line and qx is the wave vector related to
x [13,55].

After PSD1D determination, WSxM software also estimates the surface average PSD, provided as a PSD versus q plot.
Following Matos et al. [13], Hurst exponent (H) values were calculated from the average PSD curves using the relation H
= (α − 2)2−1 [55,56], where α is the absolute value of the log [PSD] versus log [q] curve slope.

2.8. Statistical analysis

All results were expressed as mean ± standard deviation. Significant differences between the mean values were
assessed by analyzing variance (one-way ANOVA) followed by the Tukey test. Pearson correlation tests were used to
validate the scripts developed by authors. Analyzes were realized in the Statistica software, version 7 (StatSoft, Oklahoma,
USA), considering 5% as the level of significance (p < 0.05).
5
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Fig. 2. Numerical simulation of Sierpinski’s carpet and its respective lacunar analysis: (a) 81 × 81 pixels fractal; (b) 243 × 243 pixels fractal; (c)
29 × 729 pixels fractal; (d) curves of lacunarity; and (e) linear adjustment of the 81 × 81 pixels curve. White and black regions in the fractal
mages correspond to pixels values 1 and 0, respectively.

. Results and discussion

.1. Validation of methodology proposed to calculate fractal lacunarity and moran index

Simulated Sierpinski Carpets [Fig. 2(a)–(c)] indicated that the increase of pixels’ number slowed down lacunarity decay
s a function of the box size [Fig. 2(d)]. The linear regression allowed the calculation of β , as exemplified for 81 × 81 pixels-
mage in Fig. 2(e). When the number of pixels was successively increased from 81 × 81 to 243 × 243 and 729 × 729,
acunarity exponent decreased from 0.25 to 0.18 and 0.13, respectively. Pendleton et al. [59] also found that lacunar
nalysis using the gliding-box algorithm is strongly affected by image resolution.
The proposed method was also used to analyze self-affine simulated-surfaces with different Hurst exponents [Fig. 3(a)–

e)], where color scale indicates roughness evolution. The height values from simulated images were used to generate the
oran’s correlograms [Fig. 4(a)] and curves of separability [Fig. 4(b)], fractal dimension [Fig. 4(c)–(d)], and lacunarity

Fig. 4(e)–(f)]. All fractal dimension and lacunarity curves presented suitable linear adjustment, as exemplified for H =

.10 in Figs. 4(d) and 4(f).
Tables 2 and 3 present a summary of the calculated parameters with their respective standard deviations and the

ne-way analysis of variance for each of them. ANOVA results showed that W0, W1, Z e ηmáx mean values for surfaces
ith different Hurst exponents did not present significant differences between them. Thus, these parameters were not
onsidered for correlation tests with the lacunarity exponent (β). The correlation graphs between β and the other
arameters are shown in Fig. 5.
Fig. 5 shows that µ0, µ1, Df, and β decrease with the Hurst exponent increase, while Moran Index presents the opposite

ehavior. Pearson’s correlation coefficient indicated that the lacunarity exponent has a strong positive correlation with
0 (R = 0.8299, p = 0.0001), µ1 (R = 0.8224, p = 0.0002) and Df (R = 0.9388, p = 0.0000002). On the other hand,
presented a strong negative correlation with the Moran Index (R = −0.9024, p = 0.000004). Once the lacunarity is a
easure of heterogeneity, all presented correlations agreed with the simulated profile smoothing.
H values provide essential information about the correlation and persistence of processes [60], which means that by

ncreasing the surface’s H value, the higher and lower heights tend to be followed by higher and lower ones, respectively.
his clustering process is accompanied by the appearance of furrows and mountains (Fig. 3). According to Peters [60] and
reslin and Belward [61], the fractal dimension must approach its maximum value when the Hurst exponent decreases
Fig. 5(d)]. Therefore, the roughness profile becomes denser and shows higher spatial frequencies.

The increase of I with the H growth [Fig. 5(c)] showed that spatial autocorrelation analysis was consistent with the
heory [26,60]. Moran index as a function of lags dropped more slowly for surfaces with greater Hurst exponents, as
6
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s

W

Fig. 3. 3D simulated surfaces with different Hurst exponents: (a) H = 0.10; (b) H = 0.30; (c) H = 0.50; (d) H = 0.70; (e) H = 0.90.

Table 2
Moran Index (I) for first neighborhood, fractal dimension (Df), percent of pixels corresponding to valleys (W0) and peaks (W1), valleys’ average
height (µ0), peaks’ average height (µ1), mean effective height (Z = µ1 − µ0), maximum separability (ηmáx), and lacunarity exponent (β) of the 3D
imulated surfaces.
Parameters Self-affine artificial surfaces

H = 0.10 H = 0.30 H = 0.50 H = 0.70 H = 0.90

I 0.807 ± 0.017a 0.924 ± 0.013b 0.969 ± 0.001c 0.985 ± 0.004c 0.993 ± 0.002c

Df 2.492 ± 0.014a 2.407 ± 0.014b 2.340 ± 0.007c 2.285 ± 0.022d 2.222 ± 0.020e

W0 (%) 49.9 ± 2.5a 48.1 ± 2.4a 49.2 ± 3.9a 50.2 ± 2.2a 49.8 ± 1.9a

W1 (%) 50.1 ± 2.5a 51.9 ± 2.4a 50.8 ± 3.9a 49.8 ± 2.2a 50.2 ± 1.9a

µ0 (pm) 31.9 ± 0.5a 31.1 ± 0.8a 27.0 ± 2.7a,b 23.7 ± 2.7b 22.3 ± 1.9b

µ1 (pm) 47.7 ± 0.6a 47.0 ± 0.8a 42.7 ± 2.9a,b 39.3 ± 3.2b 37.7 ± 2.7b

Z (pm) 15.8 ± 0.08a 15.9 ± 0.1a 15.7 ± 0.2a 15.6 ± 0.5a 15.4 ± 0.7a

ηmáx 0.639 ± 0.002a 0.652 ± 0.004a 0.633 ± 0.003a 0.641 ± 0.009a 0.648 ± 0.014a

β 0.144 ± 0.006a 0.120 ± 0.013a,b 0.102 ± 0.007b,c 0.092 ± 0.010b,c 0.076 ± 0.014c

Means followed by the same case letter in the same line do not differ from each other by Tukey test at 5% significance level.

Table 3
Analysis of variance for the new parameters of the simulated self-affine rough surfaces.
Source DF I Df W0 W1 µ0 µ1 Z ηmax β

Mean square 4 0.01767 0.03312 2.08 2.08 0.000 0.000 0.000 0.000 0.002048
Error 10 0.000 0.000 7.15 7.15 0.000 0.000 0.000 0.000 0.000
Total 14 – – – – – – – – –
F-value – 178.7 126.2 0.292 0.292 14.030 11.306 0.78 2.76 18.604
p-value – 0.000 0.000 0.877¥ 0.877¥ 0.000 0.000 0.563¥ 0.087¥ 0.000

¥No significance according to ANOVA at 5% significant level. DF: degree of freedom; I: Moran Index for the first neighborhood; Df: fractal dimension;
0: percent of pixels corresponding to valleys; W1: percent of pixels corresponding to peaks; µ0: valleys’ average height; µ1: peaks’ average height;

Z: mean effective height; ηmáx: maximum separability; β: lacunarity exponent.

shown in Fig. 4(a). This behavior was already expected once H is a long-range correlation measure, whereas Moran Index

is a short-range one [26,60].
7
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Fig. 4. Surface parameters of the 3D simulated images with different Hurst exponents: (a) Moran correlograms; (b) Otsu separability as a function
of ordered heights, from the lowest value (below mean plane) up to the highest one (above mean plane); (c) fractal dimension curves; (d) linear
adjustment of fractal dimension curve for H = 0.10; (e) lacunarity analysis; and (f) linear adjustment of lacunarity curve with H = 0.10.

The maximum separability showed that artificial surfaces have a binary trend once ηmáx values were greater than 0.5,
as shown in Fig. 4(b) and Table 2. The evaluation of the heights histogram’s bimodality is important to verify the reliability
of lacunarity measurements. Although W0, W1, µ0, µ1, and Z are not statistical descriptors of patterns, they are important
height parameters due to their similarity with standardized measures described by ISO 25178-2: 2012 [62]. In Figs. 5(a)
and 5(b), for example, it is possible to notice that µ0 and µ1 decreased with the increase of H , which can be an effect of
the profile smoothing.

The combination of the Otsu method and the gliding-box algorithm was consistent with the theory [22] since all
lacunarity measurements followed a power law of type L(p,r) = αr−β and the linear adjustments for analyzed surfaces
[Eq. (15)] showed R2 > 0.9 (see Appendix B). The script developed for lacunarity calculation showed an anomaly behavior
in the interval 26 ≤ r ≤ 249. In this interval, the exact count of boxes with p lacunar pixels became flawed due to the
8
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Fig. 5. Study of the correlations between the statistical quality parameters applied to artificial surfaces: (a) β with µ0 as a function of H, (b) β with
1 as a function of H, (c) β with I (1st neighborhood) as a function of H and (d) β with Df as a function of H.

Table 4
RMS roughness (Sq), mean roughness (Sa), skewness coefficient (Ssk), and kurtosis (Sku) of the AFM images from
chitosan films containing 0%, 3%, and 25% of glycerol.
Sample Sq (nm) Sa (nm) Ssk Sku

#1 3.96 ± 1.12a 2.91 ± 0.81a 0.61 ± 0.18a 6.62 ± 1.48a

#2 2.38 ± 0.51a 1.74 ± 0.30a
−0.51 ± 0.48b 7.49 ± 3.46a

#3 12.55 ± 3.29b 9.33 ± 2.19b 0.36 ± 0.30a 5.36 ± 1.42a

Means followed by the same case letter in the same column do not differ from each other by Tukey test at 5%
significance level.

random removal of occupation possibilities that occurred each time the value of r is increased. Such unfeasibility was
nly overcomed for r > 249 when the number of possibilities becomes small enough to allow the exact count of boxes.
or large values of r , ln(L) approaches to zero fastly, distorting the curve ln(L) versus ln(r) and the slope of the linear
djustment. Therefore, the slope must be calculated considering the curve’s first points outside the anomaly region.
Another lacunar analysis critical aspect is the lacunarity exponent possible values. The ln (L) versus ln (r) curve’s slope

Eq. (15)] can only assume values between 0◦ and 90◦; thus, the lacunarity exponent varies in the range 0 < β < ∞. If
= 0, the lacunar distribution is exactly the same in all parts of the image. In contrast, if β → ∞ then L → 0 according

to the power-law L = αr−β , which means that no lacuna is present on the surface [see Eq. (14)].
The range of ln(L) values can indicate the surface’s lacunar degree, as observed comparing the curves in Figs. 4(e) and

2(d). A surface with large lacunas, a porous sample, must present a more extensive range of ln(L) values.

3.2. Application to AFM images of chitosan films

Fig. 6 shows the produced chitosan films and their respective AFM images. The difference in the films’ texture is only
noticeable at the nanoscale. The topographic pattern changed significantly only for the film containing large glycerol
concentrations.

Tables 4 and 5 present the height parameters for samples #1, #2, and #3, determined using the commercial software,
and the one-way analysis of variance for each of them.

Sq is the standard deviation of surface heights, whereas Sa is the arithmetic mean of the absolute values of the
difference between recorded height and average surface height [58]. Sq and Sa are strongly correlated, but Sq presents
greater physical significance once it can influence surface energy and surface light scattering [58]. Thus, Sq and Sa values
and Tukey test revealed that sample #3 is significantly rougher than those with lower glycerol concentrations. The
9
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Fig. 6. AFM images of the chitosan films produced by casting: (a) #1 (0% of glycerol); (b) #2 (3% of glycerol); and (c) #3 (25% of glycerol).

Table 5
Analysis of variance of the height parameters from AFM images.
Source DF Sq Sa Ssk Sku

Mean square 2 119.7891 66.8004 1.379946 4.5882
Error 9 4.1056 1.8442 0.119350 5.3987
Total 11 – – – –
F-value – 29.1767 36.2221 11.56217 0.84987
p-value – 0.000 0.000 0.003261 0.459106¥

¥No significance according to ANOVA at 5% significant level. DF: degree of freedom; Sq: RMS roughness; Sa: mean
roughness; Ssk: skewness coefficient; Sku: kurtosis.

skewness (Ssk) is the ratio between the average of the third power of height values and the cube of Sq and represents
the symmetry degree of the surface heights to the mean plane. It can assume positive and negative values or zero for a
symmetrical surface [6,13,58]. A negative Ssk indicates an asymmetrical histogram with a predominance of height values
below the mean plane, whereas a positive Ssk indicates the opposite behavior. On the other hand, Sku is the ratio between
the average of the fourth power of height values and the fourth power of Sq and describes the shape of heights’ probability
distribution. Blateyron [58] affirms that spiky surfaces have high kurtosis values. Such surfaces present a predominance
of profound valleys and very high peaks. A surface with a Gaussian height distribution, for example, has a kurtosis value
equal to 3 [6,58]. Sample #2 presented a predominance of deep valleys (negative Ssk), which suggests pores’ presence.
Sku values did not show a significant difference among samples.

The parameters presented in Table 4 may not be enough to characterize the films’ surface since they undergo great
fluctuations due to scale changes and vary significantly for different regions of the same sample. They are very affected
by the presence of isolated peaks and valleys [6,13,58]. Gadelmawla et al. [63] point out that real surfaces’ geometry is so
10
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Fig. 7. Surface parameters of the AFM images from chitosan films: (a) average PSD; (b) linear adjustment of PSD curve for sample #1; (c) Moran
correlograms; (d) Otsu separability as a function of ordered heights, from the lowest value (below mean plane) up to the highest one (above mean
plane); (e) fractal dimension curves; and (f) lacunarity analysis. Samples #1, #2, and #3 correspond to films containing 0%, 3% and 25% of glycerol,
respectively.

complex that a limited number of parameters do not allow thorough description. Therefore, a more accurate description
can be obtained by introducing novel characterization parameters.

One of the concerns of materials miniaturization is whether their characteristics are preserved or not at smaller scales.
Spatial and fractal autocorrelation measures can be valuable tools to assess patterns of thin films at different scales. In this
context, we evaluated the average PSD curves, Moran correlograms, Otsu separability, fractal dimension, and lacunarity
of the studied chitosan films (Fig. 7). These curves were used to estimate chitosan films’ surface parameters (Table 6).
Results of the one-way analysis of variance for each parameter are presented in Table 7. All PSD curves and their respective
replicates exhibited suitable linear adjustment, as shown in Fig. 7(b) for sample #1 (see Appendix B).

Hurst exponent values (H) increased with the glycerol concentration causing significant changes in the film’s roughness
[Fig. 7(a) and Table 6]. A Hurst exponent between 0 and 0.5 is characteristic of an inhomogeneous distribution, a spatial
frequency series with continuous and alternating high and low-heights. For Hurst exponent equal to 0.5, the distribution
of height values is purely random. On the other hand, a Hurst exponent within the range 0.5–1 describes a homogeneous
11
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Table 6
Hurst exponent (H), Moran index (I) for the first neighborhood, fractal dimension (Df), percent of pixels
corresponding to valleys (W0) and peaks (W1), valleys’ average height (µ0), peaks’ average height (µ1),
mean effective height (Z = µ1 − µ0), maximum separability (ηmáx), and lacunarity exponent (β) of the
chitosan film containing 0% (#1), 3% (#2), and 25% (#3) of glycerol.
Parameters Chitosan films

#1 #2 #3

H 0.18 ± 0.07a 0.53 ± 0.02b 0.72 ± 0.06c

I 0.847 ± 0.070a 0.877 ± 0.019a 0.982 ± 0.004b

Df 2.39 ± 0.02a 2.36 ± 0.02a 2.23 ± 0.04b

W0 (%) 51.9 ± 8.3a 54.5 ± 6.4a 44.5 ± 6.9a

W1 (%) 48.1 ± 8.3a 45.5 ± 6.4a 55.5 ± 6.9a

µ0 (nm) 19.2 ± 7.3a 14.9 ± 6.0a 51.8 ± 26.2b

µ1 (nm) 25.2 ± 8.9a 18.5 ± 6.7a 70.7 ± 30.0b

Z (nm) 5.9 ± 1.6a 3.5 ± 0.6a 18.9 ± 4.1b

ηmáx 0.546 ± 0.033a 0.545 ± 0.048a 0.565 ± 0.041a

β 0.185 ± 0.031a 0.223 ± 0.037a 0.120 ± 0.015b

Means followed by the same case letter in the same line do not differ from each other by Tukey test
at 5% significance level.

able 7
nalysis of variance of the new parameters for the AFM images.
Source DF H I Df W0 W1 µ0 µ1 Z ηmax β

Mean square 2 0.29945 0.02016 0.02911 105.43 105.43 1621.128 3229.92 274.803 0.000 0.011
Error 9 0.00301 0.00174 0.000 52.38 52.38 257.593 340.37 6.649 0.0017 0.000
Total 11 – – – – – – – – – –
F-value – 99.316 11.575 34.21 2.0127 2.0127 6.29337 9.4893 41.331 0.280 12.716
p-value – 0.000 0.00325 0.000 0.189¥ 0.189¥ 0.0195 0.0061 0.000 0.762¥ 0.002

¥No significance according to ANOVA at 5% significant level. DF: degree of freedom; H: Hurst exponent; I: Moran Index for the first neighborhood;
Df: fractal dimension; W0: percent of pixels corresponding to valleys; W1: percent of pixels corresponding to peaks; µ0: valleys’ average height; µ1:
peaks’ average height; Z: mean effective height; ηmáx: maximum separability; β: lacunarity exponent.

distribution, a spatial frequency series presenting height-values with repetition probability greater than 50%, which
indicates a tendency and is called a persistent process [55,60]. Such differences can be observed comparing Figs. 6(b)
and 6(c).

Although samples #1 and #2 have statistically different mean H (Table 6), their Moran correlograms are very similar
[Fig. 7(c)], which can be confirmed by I values and the comparison between Figs. 6(a) and 6(b). It is important to emphasize
that only a few points were considered for estimating the average PSD [64], while the entire height matrix was used to
construct the correlograms. Thus, Moran’s correlogram provides an interesting and complementary characterization of
the spatial roughness distribution.

Fractal dimension (Df) values (Table 6) were determined based on the curves in Fig. 7(e). Df reduced from film #1
o #3, confirming the topographic profile smoothing at large glycerol concentrations. Particle clusters characterized this
urface smoothing, possibly formed due to polarity differences between glycerol and chitosan molecules [38,65]. Clusters
ontribute to a greater spacing between the valleys, forming channels that favor liquids flow. Pinto et al. [38] showed that
n increase of glycerol concentration in chitosan films enhanced its hydrophilic character, both because of the glycerol
olarity and the surface morphology changes.
Changes in the separability curves’ profile [Fig. 7(d)] and ηmáx value (Table 6) suggested variations in the film’s

hickness. Comparing the mean thickness of samples #1 (0.14 ± 0.02 mm), #2 (0.19 ± 0.04 mm), and #3 (0.31 ± 0.04 mm),
nly the last one differ significantly. Therefore, a more detailed investigation of the relationship between separability curve
nd film thickness is essential.
The percentage of valley’s (W0) and peak’s (W1) pixels did not change significantly among samples. However, film #2

presented a higher kurtosis value (Sku = 7.49), negative skewness (Ssk = −0.51), and 54.5% of valley pixels, suggesting
more porous aspect. Among the films’ lacunarity exponents, sample #2 presented a higher β value (0.223). The valleys’
verage height (µ0), peaks’ average height (µ1), and average effective height (Z) for film #3 differed statistically among
amples, confirming the thickness increase. For higher glycerol concentrations, the number of plasticizer molecules
etween the chitosan chains increases [65], enlarging the intermolecular distance and weakening its bonds.
Regarding the estimates of lacunarity exponents (β), the Otsu method presented maximum separability (ηmax) greater

han 0.5 for all samples [Table 6 and Fig. 7(d)], confirming the images’ binary trend. Furthermore, all linear adjustments
or the lacunarity curves exhibited R2 > 0.9 (see Appendix B). The curves in Fig. 7(f) and the β mean values (Table 6) also
howed that only film #3 indicated a significantly lower lacunar change rate.
Our results also suggested that chitosan films containing 25% of glycerol have a more homogeneous and less complex

opography, with a predominance of low spatial frequencies. AFM images already pointed out topographic differences
12
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mong films (Fig. 6), but this behavior agrees with the correlogram in Fig. 7(c), where sample # 3 showed a strong spatial
orrelation between height values. Notwithstanding, proposed scripts proved to be promising tools to complement the
opographic analysis of AFM images.

. Conclusions

This work presents a methodology to improve AFM images’ characterization by using fractal lacunarity and Moran
ndex, which was successfully applied to analyze chitosan films. Our results also showed that:

i) Identifying surface lacunas using Otsu method introduced new parameters (W0, W1, µ0, µ1, and ηmax) to topographical
nalysis, giving greater statistical significance lacunarity measurements.

ii) The gliding-box algorithm, adapted to the R programming language, provided greater control and accuracy over the
acunarity exponent estimation.

iii) Lacunarity analysis is affected by images’ pixels number. Thus, comparisons between different samples are limited to
mages with identical resolution.

iv) Determination of Moran index allowed access to new topographical information of surfaces, showing potential as a
omplementary measure for the Hurst exponent.

v) Application of the methodology using AFM images of chitosan films suggested that the proposed surface parameters
ould be a complementary tool to the quality processing control of thin films.
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Appendix A. Scripts used in this paper

The scripts used in this paper are openly available at:

https://github.com/erveton/Otsu_Binarization_AFM_Image

https://github.com/erveton/Lacunarity_AFM_Image

https://github.com/erveton/Moran_Index_AFM_Image

Appendix B. Supplementary material
Supplementary data to this article can be found online at: https://github.com/erveton/Supplementary-material.git.
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